Abstract of Practical Privacy via New Systems and Abstractions, by Kinan Dak Albab, Ph.D.,
Brown University, May 2025.

Data privacy has become a focal point of public discourse. In response, data protection and privacy
regulations have been enacted throughout the world, including GDPR and CCPA, and companies
make various promises to end users in their privacy policies. However, high-profile privacy violations
remain commonplace, in part because complying with regulations and policies is challenging for

applications and developers.

This dissertation demonstrates how we can help application developers achieve privacy compli-
ance by designing new privacy-conscious systems and abstractions. The dissertation discusses two
systems. The first, K9db, is a privacy-compliant database that supports GDPR-style subject ac-
cess requests by construction. The second, Sesame, is a system for end-to-end enforcement of
privacy policies in web applications. Sesame provides practical guarantees by combining a new
static analysis for data leakage with advances in memory-safe languages, lightweight sandboxing,
and engineering practices around code review. This dissertation demonstrates that creating pri-
vacy abstractions at the system level simplifies compliance and guarantees privacy requirements by

design.

Practical Privacy via New Systems and Abstractions

by
Kinan Dak Albab
B.S., American University of Beirut, 2015
M.S., Boston University, 2020

A dissertation submitted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2025

© Copyright 2025 by Kinan Dak Albab

This dissertation by Kinan Dak Albab is accepted in its present form by the
Department of Computer Science as satisfying the dissertation requirement
for the degree of Doctor of Philosophy.

Date
Malte Schwarzkopf, Advisor
Recommended to the Graduate Council
Date
Shriram Krishnamurthi, Reader
Date
Ugur Cetintemel, Reader
Approved by the Graduate Council
Date

Thomas A. Lewis
Dean of the Graduate School

iii

Dedication

To Kirby and Toshiro. Roam happy and play free. Forever.

To those who sought Life, Freedom, and the Pursuit of Happiness and made the ultimate sacrifice
along the way, be it under fiery skies, solitary exiles, or torturous dungeons. To my fellow Syrians
who stood against tyranny and terrorism: Bassel Shehadeh, May Skaf, Raed Al Fares, Ghiath Matar,
Michel Kilo, Samira Khalil, Razan Zaitouneh, Wael Hamada, Nazem Hammadi, Fadwa Suleiman, Paolo
Dall’Oglio, Hussein Harmoush, and many, many others I only know by their courage but not by name or
face. You are forever my north star and my impenetrable shield against nihilism, cynicism, and despair.

You had something worth dying for, so there must be something worth living for, I just have to find it.

v

Acknowledgments

I owe everything in this dissertation and all that I am and will ever be to the many friends I found
along the way. I hope the blind Dahr! is kind enough to preserve, for eternity, this woefully inadequate
account of your role in my research and journey through life.? I am not good enough with words to truly

express my overwhelming gratitude and love, but I will give it a go. I am deeply thankful:

To Malte Schwarzkopf for being the greatest gift that can happen to a researcher. I am proud to call
myself your student. I hope to follow in your footsteps and be as you have shown me. If I am ever lost, I
will always look up to you to remind myself of how to do good science and how to teach, mentor, and

empower students.

To Artem Agvanian® for a combination of intelligence and gentleness rarely found in men and for
good taste in Coffee and Sazeracs. To Corinn Tiffany® for teaching me how to footshake dance and
helping me present professionally at conferences. I stopped having things I can teach you a long time
ago, but I still learn so much from the both of you every day. This dissertation and its author owes you
boundless credit. You made wanting to be a professor a no-brainer, but I am afraid neither my future

students nor my future friends will live up to your example.

To Sophie Byrne for teaching me true kindness and showing me nothing but bangers, always. You
made this small city and this run-of-the-mill man feel so big and extraordinary. Whatever achievements
I may have in the future, being a good friend to you will always remain my favorite. To Nell for love,
trust, routine, purpose, and irresistible charm. Without the two of you, there would be no Sesame, with or

without the bun.

To Shriram Krishnamurthi and Ugur Cetintemel for patience and guidance from my comps proposal

' An arabic word referring to the unpredictable and cruel passage of time and fate.

2After all, fate memorialized far less glorious things https://en.wikipedia.org/wiki/Complaint_tablet_to_
Ea-n%C4%81%E1%B9%A3ir.

3 A failure of language is that it seeks to impose an order even when none fits. The order here is merely alphabetical.

https://en.wikipedia.org/wiki/Complaint_tablet_to_Ea-n%C4%81%E1%B9%A3ir
https://en.wikipedia.org/wiki/Complaint_tablet_to_Ea-n%C4%81%E1%B9%A3ir

to this dissertation and the many paper submissions in between. You took valuable time above and
beyond to offer sharp observations and helpful feedback. Your efforts did not only improve my papers

and dissertation, but also helped me mature as a researcher and academic.

To Bassel Mabsout for being the ultimate sous chef and hype man. You were my guardian angel in
my darkest hour. I hope you remain as lucky as ever. To Nicolas Alhaddad for forgiving my deep faults

and many imperfections. We had over a decade of unrepeatable memories. Here’s to many more.

To Justus Adam and his “two cousins” for gentle accountability, wit, and insight in research and

beyond. There is no one else I would trust to take the reign of my domain.

To Mayank Varia for teaching me all I know about cryptography and taking a genuine interest in my
growth and career, even when none was expected. I owe much of this to you. To Azer Bestavros and
Assaf Kfoury for believing in me when I was even more of a nobody and time and again since. I look

forward to being your colleague.

To Livia Zhu for unrelenting dedication and grit hidden behind an untroubled friendly smile. You are
my hero. To Howie Chen for tantalizing elegance and fashion. To Timothée Zerbib for being a great sport

with infuriating taste buds. To Hannah Gross whom I strive to mimic in intelligence, flair, and attitude.

To Alex Portland, Sarah Ridley, Allen Aby, Benjamin (and Banji) Kilimnik, Wyatt Howe, Ishan

Sharma, Alexandre Doukhan, Aaron Jeyaraj, and Raj Paul for their indispensable time, sweat, and insight.

To Muna Khalil for unlimited support unaffected by geography or time. When my life was a cycle
of work and sleep, I lived through your adventures and stories. To Dany, Karam, Omar, Yasser, Mehdi,
Constantine, André, and Hadi for bonds that survive time, distance, and trauma. On your collective rock I

have built my church.

To Merlin Cunniff for telling me about poetry, teaching me to mine and fish, and for overall wizardry
and linguistic mischief. To Jesse Smith and Patrick Cull for perspectives otherwise beyond my reach. To
Bill, Ivan, Johnny, Mark, Martin, Matt, Ryan, Susan, and all the staff and regulars at GCB. To Bobby,

Brian, Ron, and all the recurring and one-off guests at the Wednesday evening drinking society (weds).

To Rawane Issa for setting me on this long PhD journey and seeing me through foolish youth until
this more foolish maturity. Even in absence, you are the voice that my head uses to put me on the path of

reason and good judgment.

vi

To Joseph, the prankster Amtrak conductor, for brightening a dull and long commute. To my friend
the Chef at Oppa Sushi, the sandwich makers at Cutty’s, and the shuckers at Gift Horse. To David Lynch

and Agent Cooper for my many dreams and nightmares that kept me and my students entertained.

To Maryam Abuissa for an echo of a far away home and a sense of belonging I had long lost. To
Franklin Harding, Eileen Nolan, and Phuoc Pham Van Long (aka the funny man) for humoring me and
my tin foil hats. To Gavin Gray, Alexander Lee, Jasmine Liu, and the rest of the first years for bringing

with them a dose of much needed sunshine.

To Peter (Peyer) Flockhart for under-credited contributions, ribs, and good times that always pick up

where we left off. To Lucy Qin whom fate seems to always have us chasing each other.

To Carolyn Zech, Franco Solleza, Aijah Garcia, Megan Frisella, Vic Li, Shirley Loayza Sanchez,
Sreshtaa Rajesh, Leonhard Spiegelberg, Lily Tsai, Julia Netter, the up-and-coming Maxi, and the entirety

of ETOS, past, present, and future: I could not ask for a better family.

To Vincenzo Prosperi, Olivia Tiedemann, Anders Erickson, and Leandro DiMonriva for beloved

recipes and crowd-favorite cocktails that drew smiles on my students’ faces on countless occasions.

To everyone who has ever taken or will ever take CS2390. If I ever come to regret my career choices,

I will blame thee.

To Ben Getchell and all the members of Leather Lung. Whenever I celebrate a submission at one of

your shows, it ends up being accepted. Keep playing (my career depends on it).

To the entire New England Metal and Prog communities, all the strangers I befriended at shows, and
all the staff at the Palladium, Middle East, Paradise Rock Club, Fete, and Sinclair. To the old guy at every

prog rock concert colloquially known as “Bilbo Baggins”.

To Elijah Rivera, Siddhartha Prasad, Nikos Vasilakis, Akshay Naranyan, Deepti Raghavan, Will
Crichton, and the systems, programming languages, and cryptography communities at Brown for being

amazing colleagues and a fantastic support system. You have set the bar so high.

To Tom Brady for encouraging me to resist the passage of time, and to Zinedine Zidane and all the

Real Madrid legends for helping me accept it.

To Paul Attie for that first spark of curiosity and inspiration. I am forever grateful. To Mohamad Jaber,

vii

George Turkiyyah, Wadi’ Jureidini, Louay Bazzi, Nader El-Bizri, Eric Goodfield and my mentors at AUB.

To George, Adel, Bayan, Baydon, Mohammad El-Hajj, and the Bliss 207 crew where this all started.

To Andre Toriz and Zu Jaber for teaching me etiquette and story telling. To Zakaria, Assem, and all
those who passed by the Captain’s Cabin. To Beirut where I felt human for the very first time. “Remember

me whenever the night goes dark.”

To my friends, mentors, and teachers from a previous life: Sarah Scheffler, Dina Bashkirova, Palak
Jain, Soham Sinha, Craig Einstein, Sasan Golchin, Yara Awad, Ran Canetti, Gabe Kaptchuk, Adam
Smith, Leonid Reyzin, Leonid Levin, and the entire BUSec group. To Frederick Jansen, San Tran, and all

of the SAIL team and interns.

To Neal, Jack, Belew, and Fripp: absent lovers, absent lovers. To Meshuggah, Calle Thomér, Buster
Odeholm, Calder Hannan and everyone who dances to any discordant system. To Frank Klepacki and
Stuart Chatwood for the soundtrack of the many 70s movies training montages I had in my journey. To

Ozzy, you are no ordinary man.

To Naruto and Jiraya for the power of friendship and ramen and for getting me through high school
and a pandemic. To Spades Slick and the Midnight Crew, John Egbert, Jade Harley, and the 12 trolls for

“cool” jazz and data structure humor. To Gary Cooper and the “strong, silent type”.

To the camels in the desert, olives in the mountains, and branzini in the sea. To Abu Nuwas, Sadiq
Jalal al-Azm, and all the heretics between. To Shiner Bock and anyone who brews it and Arak Al Rayan

and anyone who drinks it.

To the long line of Dak Albabs that came before for the solid ground under my feet. “Everyone should

have a monument named after their family.”

To everyone who faced me in a game of Dota 2 and lost. You are all fresh meats.

“To absent friends, in memory still bright”

viii

Contents

Dedication
Acknowledgments

1 Introduction

1.1 Background e
1.1.1 Conceptual Privacy Frameworks
1.1.2 Systems forPrivacy
1.2 Contributions
1.3 Dissertation Outline e
1.4 Related Publications

2 Background

2.1 Privacy Regulations L
2.2 Privacy-Conscious SYStems i e e e e e e e e e e e e e
2.2.1 Privacy-Conscious Systems Related to Compliance
2.2.2 Privacy-Conscious Systems Beyond Compliance

3 KO9db: Privacy-Compliant Storage For Web Applications

3.1 Motivation L e e e e e e e
3.2 KOodbOverview e e e e
3.3 Modeling Data Ownership and Sharing
3.3.1 K9db’s Annotationso Lo e
3.3.2 Expressing Developers’ Compliance Policies
333 DataOwnershipGraph

ix

3.3.4 Helping Developers Get Annotations Right 32

3.3.5 Data Ownership Graph Properties 33
3.4 Compliant by Construction Storage oo vt 34
34.1 Storage Layout and Logical uDBs 34
342 uDBIntegrity e e e e 35
3.4.3 Handling Subject Access Requests L . 36
34.4 Atomicity, Consistency, Isolation, and Durability 37
34,5 Compliance Transactions v v v v v vt e e 37
3.5 Query Execution 38
351 Optimizations v v i e e e e e e e e 39
3.5.2 Materialized Views L 40
3.6 Implementation 41
3.7 Evaluation e 43
3.7.1 Application Performanceo 43
3.7.2 K9dbDesign Drill-Down o 48
3.7.3 Schema Annotation Effort Lo 49
3.8 DISCUSSION v v o e e e e e e e e 52
3.9 Summary ... e e 53

Sesame: Practical End-to-End Privacy Compliance with Policy Containers and Privacy

Regions 55
4.1 Motivation L. e e e e e 55
4.2 Sesame OVEIVIEW o v vttt e i e e e e e e e e e 58
43 DeSigN e e e 60
43.1 Policieso 62
432 Contextand Policy Checks 63
4.3.3 Guarantees and Threat Model 64
4.4 Policy CONtainers v v v i v e i e e e e e e e e e e e 65
4.5 Privacy Regions 67
4.5.1 Static Analysis and Verified Regions 68
452 SandboXes e e e 70

453 Critical Regions 71

4.6 Implementation e e e 73
4.7 Application Case Studies L 73
4.8 Evaluation e 76
4.8.1 Developer Effort 76

4.8.2 Application Performance L oL oo 78

4.8.3 Drill-Down Experiments 80

4.9 DISCUSSION« oL e e e e 82
410 Summary e e e 86
5 Case study: GDPR Compliance in Practice 88
5.1 Configuring K9db and Sesame for Compliance 89
5.1.1 Schema Annotations o 89

5.1.2 Sesame Policies 92

5.2 Integrating Compliance Into Application Workflows 95
5.2.1 Human-Readable Privacy Policies 95

5.2.2 Consent and Other Policy Preferences 96

5.2.3 Endpoints for Data Access and Deletion 97

5.3 Compliance Without System Support 99
5.3.1 Manually Supporting Access and Deletion Requests 100

5.3.2 Manually Enforcing Application-Level Policies 101

6 Discussion and Future Work 105
6.1 Systems for Compliance with Other Databases and Programming Languages 105
6.2 Extensions to K9dband Sesame oL 110
6.2.1 Tracking Sesame policies in the database using SesameBun 110

6.2.2 SesaSpec: Common Specification Language for K9db and Sesame 115

6.2.3 Extending Sesame to Distributed and Microservices Applications with Tahini . . 119

6.3 Complementary Notions of Privacy 121

7 Conclusion 124

X1

A K9db Artifact 146

B Scrutinizer 148

Xii

List of Figures

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Overview of the designof K9db L. 26
Direction of K9db’s annotations on foreignkeys 28
A list of K9db’s schema annotations L oL oL 28
An excerpt from Lobsters’s database schema with K9db annotations 30
An excerpt from ownCloud’s database schema with K9db annotations 31
Transitive and variable ownershipinK9db 0oL 31
The data ownership graph for Lobsters 32
The data ownership graph forownCloud 32
An example of a compliance transactionusing K9dbo 37
End-to-end Lobsters performance with and withoutK9db 44
Lobsters performance with K9db with varying number of users 45
Application performance using K9db and a comparable caching baseline 46
End-to-end ownCloud performance with and without K9db 48
The impact of K9db’s design and optimizations on its performance 48
KO9db annotation effort for several real applications 51
Sample application endpoint with and without Sesame 59
A real endpoint from WebSubmit that uses Sesame for policy enforcement 61
An example implementation of a policy in Sesame 62
Examples of buggy critical regions rejected by Sesame 62
The four API'levelsin Sesame 66
Size of policy code in Sesame four web applications 76
Counts and sizes of privacy regions in four web applications 77
Review burden of critical regions in four applications 78

xiii

4.9 End-to-end application performance with and without Sesame 79

4.10 Drill-down experiments to evaluate three performance optimizations in Sesame 79
4.11 Results of applying SCRUTINIZER to four web applications 81
4.12 Two examples of application “glue code” 85
5.1 Excerpt from WebSubmit’s database schema with K9db annotations 90
5.2 Sesame policy foverning release of student data to potential employers in WebSubmit . . 94
5.3 A screenshot of the account creation page in WebSubmit 96
5.4 A screenshot of GDPR data access user interface in WebSubmit 98

5.5 Examples of WebSubmit endpoints where application developers manually attempt

privacy compliance Lo e e 103
6.1 The original and Sesame-modified aggregation query in WebSubmit 111
6.2 Current Sesame policy for aggregation in WebSubmit 111
6.3 Current black-box integration between Sesame and the database 112

6.4 The proposed design of SesameBun for tighter integration of Sesame and the database . . 112
6.5 Example unified K9db and Sesame specification for WebSubmit using SesaSpec 117

6.6 The design of an example distributed application that uses Tahini for privacy enforcement 120

X1v

CHAPTER 1

Introduction

We live in a privacy dystopia where online services, both large and small, frequently misuse data,
either intentionally or unintentionally. This is likely to get worse as services collect more and more data
on users, e.g., through wearables and other smart devices [Cho25], and as this data is used to train larger
and larger LLMs and other machine learning models, which may themselves leak individual data from
their training sets to other users [Gho24]. This is evidenced by recent calls by the FTC reminding Al
companies to uphold their privacy and confidentiality commitments [Sta24], and by the increasingly
negative consumer sentiment towards the scale of data collection [ARA+19] and how much control

internet companies have over users’ personal data [Bru21].

Recent privacy and data protection laws attempt to alleviate these privacy concerns by posing
various requirements on how applications may collect and process data. We discuss these laws and
their requirements in greater detail later in this dissertation, including the EU’s GDPR [GDPR16] and
California’s CCPA [CCPA18], among others [Bral9; Ind19; Tho19]. Complying with these laws poses
technical challenges for organizations and their developers, even when they are well-meaning and have

meaningful incentives to comply.

A large portion of these challenges stem from an ad hoc approach to compliance, where application
developers must manually implement features required by laws, keep a mental model of all the policies
that govern how data is collected and used, and add the required explicit checks or implicit logic flows
throughout their application code to enforce these policies. This manual approach imposes significant
burdens on application developers. It is also prone to human error and omission, especially as the

application logic and features continue to evolve over time.

As a result, hefty fines due to privacy violations have become commonplace, which indicates system-
atic problems in current approaches to privacy and compliance, further decreases user trust, and costs
companies millions in fines. For example, Instagram was fined €405M in 2022 for an application bug
that causes children’s contact information to be publicly revealed in limited cases (e.g., when they have
business accounts), although Instagram had disallowed this in its policies and correctly enforced it in

most cases [Eur22].

My research presented in this dissertation implements new practical privacy abstractions in familiar
systems that are compatible with the current web architecture and applications. Furthermore, it shows
how these systems and abstractions can help well-intentioned application developers meet their privacy
requirements with reasonable engineering and performance overhead. This dissertation focuses on two of
my systems, K9db [DSA+23] and Sesame [DAA+24a], which target users’ consent and control over their
data in web applications, specifically along the dimensions specified in privacy laws such as the GDPR.
Some of my other work outside the scope of this thesis demonstrates that baking privacy abstractions
into other kinds of systems also simplifies realizing other notions of privacy that extend beyond privacy

laws [DIL+19; DIV+22].

Thesis Statement. The results presented in this dissertation seek to provide evidence in support of the

following thesis statement:

It is possible to design familiar infrastructure systems compatible with the modern
web that provide new privacy abstractions to help well-intentioned developers meet
their desired privacy properties, including the requirements of privacy laws around

user consent and control.

Tracking data ownership and privacy policies at the database and web framework
levels provides automatic compliance guarantees for the storage and processing of

data, respectively.

These new privacy systems and abstractions help with compliance while requiring

reasonable engineering effort and with low performance overhead.

This thesis statement refers to three key terms and assumptions that we define below.

Familiar Systems. Earlier work demonstrates that systems can provide strong privacy guarantees against

2

powerful adversaries by using complex cryptographic techniques or niche programming languages.
However, application developers face steep learning curves when attempting to use such systems. In
order to achieve our goal of simplifying compliance for developers in practice, we aim to provide systems

that are familiar to application developers and thus easier for them to learn and use.

Indeed, K9db is an SQL database that transparently implements the MySQL protocol, a popular
paradigm familiar to many web developers. Sesame relies on the Rust programming language, which as
of this writing is the 8th most popular programming language according to the PYPL index [Car23], and
continues to rapidly increase in popularity [Sza22]. We discuss ideas and challenges for adapting the

techniques in K9db and Sesame to other popular database systems and programming languages in §6.1.

Compatible Systems. We aim to build systems that are compatible with the modern web ecosystem and
its application architecture. Currently, applications collect data from users and other services, store it in
back-end databases, and process it for a variety of purposes. Furthermore, applications may invoke third-
party services and APIs to perform part of their processing e.g., online payment processors. Applications

frequently offer free or discounted services to users by relying on targeted advertising to generate revenue.

Privacy laws aim to improve end-user privacy without radically disrupting or redesigning this ecosys-
tem. Similarly, our goal is to build practical systems that are compatible with the modern web applica-
tion ecosystem. For example, K9db simplifies the handling of user data access and deletion requests
without disrupting the way applications store and query data. Contrast this with alternative Web3 sys-
tems [MSH+16; Nos23] that ensure users have control of their data but require a radical redesign of web
applications to operate in a decentralized manner, or with cryptographic and distributed systems [BKV+21;

HZX+16] that are incompatible with the advertising-driven revenue model of the web.

Well-Intentioned Developers. We aim to help application developers within well-meaning organizations
comply with their desired privacy policies. An organization’s privacy policies may encode end-user
consent and control requirements from privacy laws as well as other self-imposed policies e.g., for

authentication, security, or liability.

In this model, we assume that organizations are motivated to define and comply with such policies by a
combination of reputation, legal, and financial incentives. We aim to help organizations meet these policies

even when they have complex applications built and maintained by large teams of developers, where

manual ad hoc approaches to compliance are error-prone. Instead, we envision that such organizations
mandate their developers to use systems and tools like Sesame and K9db, and create internal processes

around them, such as code review or the use of various associated linter and static analysis tools.

We observe that many (but not all) cases of GDPR violations fall under this model, where organizations
did not have any obvious advantage, financial or otherwise, from their incompliant behavior. Instead,
their violations were simply the result of application bugs or human error due to the manual nature of
current approaches to compliance. We believe that this includes the Instagram violation discussed earlier
that accidentally revealed children’s data when they created business accounts, and many of the violations
we discuss in §2.1. Techniques for guaranteeing privacy properties when organizations and applications
are actively malicious exist, but they come with several performance and compatibility tradeoffs and are

outside the scope of this dissertation.

Below, we provide a brief overview of privacy laws and their requirements, other conceptual privacy
frameworks, and existing systems and abstractions that support them (§1.1). we state the contributions de-
scribed in this dissertation (§1.2) and outline its overall structure (§1.3). Finally, we list prior publications

that relate to or inform this dissertation (§1.4).
1.1 Background

Privacy is a fuzzy concept that often means different things to different people in different contexts.
This dissertation focuses on privacy from the lens of ensuring that applications respect user consent and
privacy preferences and provide them with reasonable control over their data, notably the ability to access
or delete that data on request. This is a challenging task that application developers often get wrong, in
large part because they lack automatic systems and tooling support, and must instead rely on ad hoc and
error-prone manual reasoning approaches. This dissertation explores how to assist application developers
in ensuring that their applications meet these requirements by integrating new privacy abstractions into

off-the-shelf infrastructure systems, such as databases and web frameworks.

Other complementary notions of privacy include secure computation of functions over hidden, secret
data, and statistical privacy techniques for providing individuals who may have contributed their data to
statics and aggregates with plausible deniability. The widespread adoption of these techniques also faces
challenges in practice, originating similarly from a lack of practical systems and tools. In some of my

other work outside the scope of this thesis, I similarly explore how to make these techniques easier to

use in the real world by integrating them into easy-to-use familiar systems. Crucially, these techniques
provide orthogonal privacy and security guarantees to the consent and control requirements that are the
focus of this dissertation, and they target a different threat model than the research presented here. We
provide a brief discussion of some future work ideas on how the work presented in this dissertation may

complement these techniques in §6.3.

Finally, other work looks at privacy with respect to powerful, malicious adversaries, such as nation-
state mass surveillance or protections against data breaches and hacking groups. Privacy is also often
intertwined with adjacent notions, such as content moderation, algorithm fairness, and censorship
resistance, among others. Although important and interesting, these concepts are orthogonal and go

beyond the scope of this dissertation.

1.1.1 Conceptual Privacy Frameworks

User Consent and Control. The first notion of privacy focuses on ensuring that applications respect
user consent and that users maintain sufficient control over data about them stored by applications and
services. This approach is at the heart of privacy laws, such as the EU’s GDPR [GDPR16] and the CCPA
in California [CCPA18], which require companies to acquire and respect informed user consent when
collecting and processing user data, and allow users certain control rights over that data, including the
rights to access and delete it. These laws rely on active enforcement from government and data protection

agencies, and violations often result in large fines. See §2.1 for more details.

These fines along with the increasing public interest mean that privacy scandals have significant
reputation and financial consequences for companies. These consequences create strong incentives
for companies to comply with privacy laws. As a result, companies can no longer treat privacy as an
afterthought, and some are even using privacy in their branding, e.g., Apple’s “Privacy. That’s iPhone”
ad campaign [OFI22]. However, compliance remains technically challenging and can pose a significant
burden on smaller organizations without significant technical expertise. In large part because the status quo
relies on manual and ad hoc approaches that are error-prone and pose a significant burden on application
developers. Some existing research attempts to create tools and systems to simplify compliance, but faces

significant performance, expressivity, and usability challenges (see §2.2.1). The research presented in this

dissertation is an important step towards overcoming these challenges.

Secure Computation and Privacy-Enhancing Technologies. Privacy-enhancing technologies (PETSs)
aim to enable computation over sensitive data while minimizing data collection and maximizing data
security. Cryptographic techniques, such as secure multiparty computation [BGW88; Sha79; Yao86] and
fully homomorphic encryption [Gen09], as well as recent advances in trusted execution environments
and enclaves, allow computations over sensitive data in “encrypted” (or otherwise hidden) form. As a
result, the parties performing the computation are unable to observe or learn information about the inputs
or other intermediary values other than the final output of the computation. These techniques have seen
some use in the real world e.g., for wage data analysis [LJD+18] and private auctions [BCD+09], but their
adoption remains limited to a handful of sensitive scenarios due to a variety of performance, engineering,

and usability challenges [HHN+19; QLJ+19].

Without additional mechanisms, these technologies are insufficient to ensure that applications respect
end-user consent, e.g., that they use end-user data to compute functions for purposes allowed by that user,

or that users maintain control over their data throughout the computation, e.g., by deleting their data.

Statistical Privacy. This approach focuses on ensuring that the aggregates computed on some input
data set do not leak information about individuals in that data set. This includes differential privacy
(DP) [DMN-+06], which provides protections by adding noise sampled from a carefully selected distri-
bution to the aggregates prior to their release. DP is seeing increased adoption in practice, including in
the US Census [Abo18], contact tracking, typing auto-complete on smart phones, and telemetry data
analysis, among others [Des24]. However, DP remains difficult to configure correctly e.g., in the presence
of floating point errors [Mirl12], and its guarantees are difficult to interpret in practice. Furthermore,
applying DP to real-world analytics is complex, especially for novices, due to the lack of easy-to-use DP

tools and systems [NSN+24].
1.1.2 Systems for Privacy

Each of the above three privacy frameworks faces unique technical challenges to adoption in practice.
However, at a high level, these challenges share a common thread. Namely, it is technically challenging
for developers to apply them to their applications in a correct, performant, and non-intrusive way i.e.,
without significant application redesign or engineering effort. This reflects the lack of easy-to-use privacy
abstractions in familiar systems that developers rely on when building their applications, e.g., in the

underlying database management systems, compilers, language runtimes, web frameworks, and so on.

In fact, existing survey work identifies the lack of tools and abstractions for privacy at the system
level as a particular pain point in each of the above three frameworks [HHN+19; NSN+24; SBW+20].
Academic research systems that aim to alleviate some of this pain suffer significant drawbacks that
hinder their adoption in practice. Some come with large runtime overheads [SBW+19; YWZ+09], often
because they aim to protect against powerful adversaries [HZX+16]. Others require significant effort from
application developer e.g., by mandating that they use unfamiliar programming languages with complex
type systems [LKB+21], propagate and reason about complex security labels [ZBK+06], or transitively
port or re-engineer all of their application’s libraries and dependencies [LTB+24]. Many are incompatible
with the existing web ecosystem and its practices e.g., they rely on decentralization [MSH+16] or separate
user data into isolated universes [WKM19] or dedicated virtual machines [KSB+19]. We discuss such

related work in greater depth in §2.2.1.

This presents us with new opportunities and challenges. Application developers have new incentives
to meet privacy requirements that stem from privacy laws and increased public attention. But they need the
necessary toolkit to achieve this. They need a common vocabulary to describe their desired requirements,
design principles and practical tooling to reason about whether their code meets these requirements, and
privacy support from the underlying systems they commonly use. Thus, this dissertation argues that we
can help developers correctly meet their privacy requirements and consequently improve privacy for
end-users by building and baking such privacy abstractions into familiar systems that are compatible with

the current web ecosystem and that require low development and runtime costs.
1.2 Contributions

This dissertation describes three primary contributions:

1. The first contribution is the design and evaluation of K9db, a new privacy-compliant database that
supports GDPR-style subject access requests and other storage requirements. K9db reorganizes
storage around data ownership as a first-order principle and provides new compliance-related
abstractions that mirror traditional concepts in SQL databases familiar to most developers, e.g.,
ownership annotations and compliance transactions that correspond to SQL foreign keys and SQL
transactions, respectively. We demonstrate that K9db’s organization and abstractions allow it to
correctly handle user access and deletion requests, while ensuring that regular application queries

exhibit performance and ACID guarantees comparable to traditional SQL databases.

2. The second contribution is Sesame, a new system for end-to-end enforcement of privacy policies in
web applications. Sesame focuses on policies that govern the application logic and its processing
of user data. Sesame relies on recent advances in memory-safe programming languages to get
automatic, low-friction guarantees for the vast majority of application code, and to distill enforce-
ment of privacy policies down to small, isolated, and infrequent privacy regions. Sesame reasons
about these regions by combining new a static analysis for data leakage with recent advances in

lightweight sandboxing, and with engineering best practices around code review.

3. The final contribution is a case study that describes how application developers use K9db and
Sesame in practice to obtain compliance assurances. The case study is based on WebSubmit, an
in-house homework submission application that we use in various courses at Brown. This case
study compares the experience of application developers using K9db and Sesame to the status
quo, where developers must manually implement any functionality required for compliance and

explicitly enforce the needed privacy policies throughout their application code.

I have led and contributed to the design and implementation of all the systems, abstractions, and
algorithms in this dissertation. However, colleagues and mentees in the ETOS research group have at

times assisted me in some of the implementation and evaluation, or contributed specific components.

In K9db, Ishan Sharma implemented parts of the dataflow engine (§3.5.2) under my supervision for
his Masters thesis, specifically for achieving read-your-writes consistency. Benjamin Kilimnik and Aaron
Jeyaraj investigated the database schema and data ownership semantics for Shuup (§3.7.3). Justus Adam
investigated variable ownership in ownCloud and implemented its experiment harness (§3.7.1) for his
Fall 2021 CS2390 course project. Finally, a much earlier initial prototype of K9db that I built on top of
SQLite was inspired by a high-level design proposed by Malte Schwarzkopf et al. [SKK+19].

In Sesame, Artem Agvanian and I sketched the high-level algorithmic design for Sesame’s static
analysis tool, SCRUTINIZER (§4.5.1), with Artem contributing its implementation in its entirety. Allen
Aby and I implemented the FFI tooling required to sandbox Rust functions with RLBox (§4.5.2), which
Alexander Portland and I later optimized by implementing “pointer swizzling” and enabling safe reuse of
sandbox instances across invocations. Corinn Tiffany implemented the code signature and verification
mechanism for Sesame’s critical regions (§4.5.3). Finally, I worked with Alex Portland and Sarah Ridley

on porting Portfolio and Voltron to Sesame, respectively (§4.7).

1.3 Dissertation Outline

§2 provides background information on privacy laws and discusses their main requirements, including
the technical challenges that application developers face when trying to comply with them using
current practices. It also discusses related systems that aim to simplify compliance or provide

related privacy guarantees for web applications.

§3 describes the design of K9db, a new database that complies with GDPR subject access requests.
This section describes K9db’s schema annotations, which developers use to specify their applica-
tion’s data ownership semantics, the data ownership graph (DOG), and K9db’s data ownership-
centered storage organization. It also evaluates the performance and memory overhead of K9db

and the schema annotation effort that it requires using several real-world applications.

§4 describes the design of Sesame, a new system for end-to-end enforcement of privacy policies in web
applications. This section describes Sesame’s policy API, policy containers, and privacy regions,
which are based on static analysis, sandboxing, and code review and signing. It discusses the
process and effort required from application developers to port or implement their applications with
Sesame and evaluates its performance by looking at loads from two web applications: WebSubmit

and Portfolio.

§5 describes the end-to-end experience of ensuring that an application is GDPR-compliant using
K9db and Sesame from the perspective of the developers of that application. This section revolves
around a case study based on our experience in porting and deploying WebSubmit with K9db and
Sesame. It also compares this experience with current practice, in which developers must manually
implement data access and deletion functionality and need to manually ensure that their application

logic satisfies their various privacy policies e.g., through explicit checks in their code.

§6 discusses how the design of K9db and Sesame can be adapted to other familiar systems, including
non-SQL databases and other web frameworks and programming languages. It also outlines three
ongoing extensions of K9db and Sesame, including SesameBun, which aims to simplify how
applications can jointly use K9db and Sesame at the same time, and Tahini, which aims to provide

end-to-end enforcement guarantees in the presence of remote- and microservices.

§7 highlights our overall results and concludes this dissertation.

1.4 Related Publications

Parts of the work described in this dissertation was covered in two of my peer-reviewed publications:

[DAA+24a] Kinan Dak Albab, Artem Agvanian, Allen Aby, Corinn Tiffany, Alexander Portland,
Sarah Ridley, Malte Schwarzkopf. “Sesame: Practical End-to-End Privacy Compliance with Policy
Containers and Privacy Regions”. In: Proceedings of the 30th ACM SIGOPS Symposium on

Operating Systems Principles (SOSP 2024). Austin, Texas, USA, November 2024.

[DSA+23] Kinan Dak Albab, Ishan Sharma, Justus Adam, Benjamin Kilimnik, Aaron Jeyaraj, Raj
Paul, Artem Agvanian, Leonhard Spiegelberg, Malte Schwarzkopf. “K9db: Privacy-Compliant
Storage For Web Applications By Construction”. In: Proceedings of the 17th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 2023). Boston, MA, USA, July 2023.

In addition, I also authored or coauthored other peer-reviewed publications, some of which are related

to the themes discussed here, but did not directly contribute to this dissertation’s contents:

[DDH+22] Kinan Dak Albab, Jonathan DilLorenzo, Stefan Heule, Ali Kheradmand, Steffen Smolka,
Konstantin Weitz, Muhammad Timarzi, Jiaqi Gao, Minlan Yu. “SwitchV: automated SDN switch
validation with P4 models”. In: Proceedings of the 36th ACM Special Interest Group on Data

Communication Conference (SIGCOMM 2022). Amsterdam, Netherlands, August 2022.

[DIV+22] Kinan Dak Albab, Rawane Issa, Mayank Varia, Kalman Graffi. “Batched differentially
private information retrieval”. In: Proceedings of the 31st USENIX Security Symposium (USENIX
Security 2022). Boston, MA, USA, August 2022.

[LDI+19] Andrei Lapets, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank Varia, Azer Bestavros,
Frederick Jansen. “Role-based ecosystem for the design, development, and deployment of secure
multi-party data analytics applications”. In: Proceedings of the 4th IEEE Secure Development

Conference (SecDev 2019). McLean, VA, USA, September 2019.

[DIL+19] Kinan Dak Albab, Rawane Issa, Andrei Lapets, Peter Flockhart, Lucy Qin, Ira Globus-
Harris. “Tutorial: Deploying secure multi-party computation on the web using JIFF”. In: Pro-

ceedings of the 4th IEEE Secure Development Conference (SecDev 2019). McLean, VA, USA,
September 2019.

10

[QLJ+19] Lucy Qin, Andrei Lapets, Frederick Jansen, Peter Flockhart, Kinan Dak Albab, Ira Globus-
Harrirs, Shannon Roberts, Mayank Varia. “From usability to secure computing and back again”.
In: Proceedings of the 15th USENIX Symposium on Usable Privacy and Security (SOUPS 2019).
Santa Clara, CA, USA, August 2019.

[LJD+18] Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank
Varia, Azer Bestavros. “Accessible privacy-preserving web-based data analysis for assessing
and addressing economic inequalities”. In: Proceedings of the 1st ACM SIGCAS Conference on

Computing and Sustainable Societies (COMPASS 2018). San Francisco, CA, USA, February 2018.

[JFD+18] Mohamad Jaber, Yli¢s Falcone, Kinan Dak Albab, John Abou-Jaoudeh, Mostafa El-Katerji.
“A high-level modeling language for the efficient design, implementation, and testing of Android
applications”. In: The International Journal on Software Tools for Technology Transfer 20.1

(February 2018).

[ADS17] Paul Attie, Kinan Dak Albab, Mouhammad Sakr. “Model and Program Repair via SAT

Solving”. In: ACM Transactions on Embedded Computing Systems 17.2 (December 2017).

[JDL+17] Frederick Jansen, Kinan Dak Albab, Andrei Lapets, Mayank Varia. “Brief Announcement:
Federated Code Auditing and Delivery for MPC”. In: Proceedings of the 19th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2017). Boston, MA,
USA, November 2017.

[DIL+17] Kinan Dak Albab, Rawane Issa, Andrei Lapets, Azer Bestavros, Nikolaj Volgushev. “Scal-
able secure multi-party network vulnerability analysis via symbolic optimization”. In: Proceedings
of the 38th IEEE Symposium on Security and Privacy Workshops (SPW 2017). San Jose, CA, USA,

May 2017.

Although these publications did not directly contribute to this dissertation, some have influenced some

of its themes indirectly. JIFF [DIL+19] and its data types that encapsulate secret shares and their oblivious

operations inspired policy containers in Sesame. Furthermore, my interest in systems for consent and

control (the focus of this dissertation) began as an attempt to augment end-users’ loss of control over

their data in outsourced secure computation. For example, when my earlier work altered the computation

circuit after users submitted their data to perform error correction [LID+18; QLJ+19].

11

CHAPTER 2

Background

2.1 Privacy Regulations

Web services must comply with new privacy and data protection laws, including the GDPR [GDPR16]
in the EU, California’s CCPA [CCPA18], and similar laws in Brazil [Bral9], India [Ind19], and other
countries [Gaz19; Thol19]. These laws share many similarities, and while the discussion below focuses
on GDPR for exposition, it is similarly applicable to other laws. Furthermore, many of these laws have a
comprehensive scope: e.g., the EU’s GDPR applies to anyone who offers services to users physically in
the EU and touches many aspects of web services [SWC19]. Thus, they broadly apply to applications,

even those based in other jurisdictions.

This dissertation focuses primarily on systems and technical infrastructure to facilitate compliance
with aspects! of these laws around respecting end-user consent and ensuring that they have control over
their data. We omit discussion of other stipulations that are less technical in nature or orthogonal to web
services’ technical infrastructure, such as transparency and reporting requirements with respect to data

breaches.

Access, Deletion, and Subject Access Requests (SARS). Most laws grant users control rights over their
data. The GDPR, for example, requires services to honor Subject Access Requests (SARs). These requests
allow a “data subject” (i.e., an end user) to request a copy of their data (Right to Access, Article 15), to
request the deletion of their data (Right to Erasure, Article 17), and to receive the data in a portable and

machine-readable format (Right to Data Portability, Article 20). As the GDPR has become a model for

!This dissertation discusses the requirements of privacy laws in general and is not meant to be specific legal advice for any
specific applications.

12

other privacy laws, many have adopted similar SAR-like requirements. The California Consumer Privacy
Act (CCPA), for example, gives consumers the right to request “specific pieces of personal information [a

business] has collected about the consumer” (§1789.110) and its deletion (§1789.105).

Complying with SARs requires the service provider (“data controller” in GDPR terms) to identify the
information related to a data subject. If done naively, this can require significant additional metadata and
impact application performance [SBW+20], in addition to being error-prone. Failure to comply correctly
with SARs is a frequent source of fines. For example, a US Al company was fined €20 million in part
for deactivating, rather than deleting, user accounts after requesting deletions [NOY22a], and a catering
company was fined for not responding to access requests [NOY20d], among many others [NOY20a;

NOY20b; NOY21; NOY22b].

Data Security. The GDPR and other laws also impose mandates for secure data handling, particularly
encryption at rest (GDPR’s Articles 25 and 32, and CCPA’s §1798.150(a)(1)). These mandates avoid
prescribing particular technologies: e.g., the GDPR only requires that organizations take “appropriate
technical measures” to secure personal data (Article 32), giving freedom to meet the requirement in
different ways. In practice, encrypting data at rest with standard encryption schemes and deleting
the encryption keys (referred to as “crypto-shredding”), e.g., to make backups inaccessible is widely
considered a compliant approach [Rob19], even though it suffers from potential risks against future

adversaries that may be capable of breaking the encrypted backup (e.g., quantum adversaries).

Furthermore, this requires applications to ensure that user data is only accessible to authorized
users e.g., employing proper user authentication and access control (data confidentiality, Article 5(f)).
Violations of these requirements are a common source of fines for organizations with large and small
applications alike. For example, two doctors were fined in France for not encrypting patient data and

failing to protect it with proper authentication [Lou20].

Stricter requirements may apply to certain types of data or data subjects. For example, medical and
education data is subject to additional protections from HIPAA [HIPAA96] and FERPA [FERPA74] in
the US respectively, and the GDPR poses additional requirements on handling children’s data (Article 8,
Recital 38). This includes implementing age-appropriate default privacy settings, e.g.,, so that children’s
profiles are private and their emails and phone numbers are inaccessible publicly, something Instagram

was fined €405 million for violating due to an application bug [Eur22].

13

Purpose Limitation and Restriction of Processing. The GDPR requires that services collect data for
known and specific purposes, and that all present and future processing of that data be inline with those
initial purposes (Article 5(b)). The CCPA also poses a similar requirement (§1798.100(b)). The GDPR
also restricts data collection (data minimization, Article 5(c)) and storage (storage limitation, Article
5(e)) to what is necessary to carry out the desired purpose. Services often declare the purposes for which
they collect and use user data in their privacy policies or terms of services. These are human-language
documents that users of a service agree to, and applications must abide by the informal requirements set

forth in these documents.

Currently, application developers must continuously reason about these informal requirements, in-
cluding initial purposes, as they maintain their applications or add new features to it. This is an ad
hoc process that may result in mistakes, especially in large applications with large development teams.
Enforcement agencies actively pursue and fine services for violations of purpose limitation and their
terms of service. For example, the FTC fined Twitter $150 million [Com] for using user phone numbers
for targeted advertising, when it had been collecting them for the stated purpose of increasing account

security with 2FAZ.

Finally, the GDPR allows data subjects to object to the processing of their data for specific purposes,
such as using it for marketing or sharing with third parties (Article 21). The CCPA similarly allows users
to opt out of the sale or sharing of their personal data (§1798.120). This makes ad hoc compliance even

more error-prone, as different users may place different restrictions on how their data is processed.

Consent and Lawfulness of Processing. The GDPR sets several conditions that define when the
collection and processing of user data is lawful (Article 6). A common basis for lawfulness is explicit
consent provided by the data subject to whom the data belong. Alternatively, processing may be lawful if
it is required to comply with other laws, to carry out contractual obligations, or for public or legitimate

interest.

Crucially, user consent must be informed (Article 7). It is given relative to the stated purposes for
which data is collected and the conditions under which it is processed. Thus, when data is used in an

inconsistent manner, whether due to human error, negligence, or otherwise, consent becomes invalid.

™t is not clear whether this was a case of intentionally misleading users about the actual purposes their data is used for, or an
omission due to carelessness or genuine human error in reusing data after it was collected for two-factor authentication.

14

When data is collected for multiple purposes, consent must be given for all of them, and users have the

right to withdraw their consent freely at a later time.

Thus, ensuring consent is properly collected poses subtle technical challenges. Since the validity
of the consent hinges on whether the informal terms described to users match how their data is used,
or alternatively, whether application logic and data processing, including new features, are consistently

checked against the informal specifications and privacy policies.
2.2 Privacy-Conscious Systems

Researchers built various systems that aim to improve end user privacy or to simplify upholding
privacy requirements in web applications. We refer to these as Privacy-Conscious Systems and distinguish
between two categories. The first consists of systems that can plausibly assist applications and their
developers in complying with privacy laws. This may be either the primary goal of these systems, or a
consequence enabled by their design, or implied by their guarantees. A common theme in this line of
work is targeting a relaxed, but meaningful, threat model, where laws and their hefty fines are assumed
to deter malicious behavior, and thus application developers have a strong incentive to comply with
them correctly. These systems are closely related to the work presented in this dissertation. The second
category consists of systems that aim to provide privacy guarantees that differ distinctly from those
required by laws. These systems may offer orthogonal or complementary guarantees and privacy notions,
aim to protect against stronger threat models, and often propose significant changes to the architecture and
business model of the modern web ecosystem. Although less directly related to the work presented here,
we discuss these systems for completeness and because they offer insight into alternative and sometimes

complementary technical perspectives on what privacy may look like.

2.2.1 Privacy-Conscious Systems Related to Compliance

Storage Systems and SARs. Today, compliance with SARs requires application developers to
write custom queries and maintain metadata to identify and track information related to each data
subject [SBW+20]. The queries are tricky to get right and maintain as the application evolves. Thus,
automatic and correct support for handling SARs is desirable, both to reduce the burden of compliance
on companies as well as to improve data subjects’ control over their data in practice. A natural place to

add such built-in support is at the database level, since access and deletion are storage-level abstractions.

15

Adaptations of existing database systems can go some way towards complying with SARs, but can
come at a steep performance cost. For example, Shastri et al. found that secondary indexes and strict
metadata tracking impose overheads of up to Sx [SBW+20], leading to proposals to accelerate these op-
erations in hardware [IPC21]. SchengenDB [KSB+19] outlines a design that provides GDPR compliance,
but relies on extensive metadata and conservative, coarse-grained enforcement, e.g., destroying entire

virtual machine clusters when a data subject deletes their account.

To address part of this burden, some large companies built bespoke GDPR metadata stores [CKK+20,
§1] and dedicated frameworks for data deletion, e.g., Facebook’s DELF [CDN+20]. DELF’s design
closely tracks Facebook’s TAO graph database, where data objects are represented as rows whose
relationships consist of edges between them. Application developers provide deletion specifications by
annotating the nodes and edges that schematically define the database. Whenever an application instructs
DELF to delete some object, DELF cascades that deletion to all related objects transitively, as specified
by the annotations. Thus, if DELF is configured correctly, deleting the top-level object representing a

data subject should result in deleting all of that subject’s data as defined by the deletion specification.

However, DELF only solves part of the problem. It does not handle access requests, or help developers
comply with other storage-related restrictions, such as encryption at rest. Furthermore, it provides
identical deletion semantics for a deletion SAR request and regular application deletions, e.g., the same
cascading behavior for replies to a social media post when it is deleted as part of handling a SAR or
handling a regular application point deletion of that post. This may be undesirable for applications where
these semantics differ. Finally, DELF requires some application changes, as applications must use it
explicitly for deletion. DELF’s design and features are closely tied to Facebook’s infrastructure, and most

organizations lack the resources to build or deploy such a system themselves.

Access Control. Classic role-based access control (RBAC) [San98] enforces access control in databases.
Several commercial and widely used databases have built in support for RBAC, such as MySQL. However,
RBAC only expresses access control policies based on pre-defined roles and often leads to role explosion.
Several extensions aim to address these limitations by supporting richer policies, such as attribute-based

access control (ABAC) [HKF+15] and relation-based access control [Gat07].

RBAC is widely used in online services, although it is often used to manage the data and resources

developers within an organization can access (e.g., JAM in Amazon AWS [Ser25]), rather than enforce

16

access control for end users. Instead, when web applications write or read data from the database within
some application flow (e.g., in response to end-user actions), they tend to do so with ambient authority

while enforcing authentication and access control in the application code itself.

Another approach for managing access is through object capabilities. This is a powerful model that
prevents confused deputy attacks, i.e., cases where the application, acting on behalf of some user, attempts
to access data to which that user does not have access to e.g., due to a bug in the application. Several
operating systems, such as KeyKOS [BHP+92] and EROS [SSF99], use capabilities to ensure proper
access control of system resources. Existing work that applies object capabilities to web applications
includes Google Caja [MMT10], which safely integrates untrusted third-party libraries and code in web
pages by using object capabilities to express and enforce security policies, and recent proposals to use
object capabilities more systematically to improve user authentication in web applications [KKP+22]. In
addition, primitive capabilities are a popular method for implementing authentication in web applications.
For example, after a user successfully logs in, applications commonly authenticate that user by storing
a cookie containing an API key or an OAuth token [Har12]. However, this still requires application
developers to maintain an accurate account of what these capabilities or tokens allow users to do e.g., by
maintaining access control lists (ACL) and to correctly check them when handling user requests, similar

to how UNIX operating systems maintain a C-list to which file descriptors refer.

Recent database-centric access and information flow control systems can express more complex
access policies. Blockaid [ZSC+22] enforces access control and non-interference for database queries.
It only allows querying information that a user is allowed to access, by checking that the information
the queries output can be deduced from some given policy specified as a set of views. Daisy [GBS+19]
supports row and column-based policies and enforces end-to-end information flow control (IFC) policies
for database-backed applications, but does not support reasoning about aggregations and data linkage.
Qapla [MEH+17] can reason about aggregation and linkage, but cannot provide end-to-end IFC guarantees,

and comes at a steep overhead in end-to-end application performance (up to 6x).

These approaches cannot protect against application bugs, e.g., leaking data via network calls or
file I/O, and do not support policies beyond access control, even when these policies are required for

compliance, such as for purpose limitation or restriction of processing.

Information Flow Control (IFC) and Privacy Enforcement. IFC enforces end-to-end security policies

17

in programs. IFC systems may rely on enforcement via runtime labels [KYB+07; YWZ+09; ZBK+06;
ZBMO08], compile-time enforcement via type systems [LKB+21; SCHOS8] and static analysis [DD77], or
hybrid approaches [BVR15; CVMO07; ML0OO; RPB+09]. Classical IFC systems rely on a security lattice
made out of security labels and ensure that information flows only upward in that lattice. While sufficient
to describe certain kinds of access control, this paradigm is not expressive enough to capture complex
and dynamic privacy policies, such as around purpose limitation and consent. More recent systems
allow expressing such dynamic privacy policies e.g., by allowing developers to implement policies using

arbitrary Python code [YWZ+09].

A common failure point of IFC systems is that they are challenging for developers to use [EKO08]:
some require the use of custom languages unfamiliar to web developers [BVR15; LKB+21; MLOO;
PYI+16], and others require developers to propagate complex security labels [ZBK+06; ZBMO8]. They
also frequently require significant changes to the application code. Static approaches can only express
limited policies that developers must encode [LTB+24; SBR+11; SCF+11], and dynamic approaches often
come with steep performance costs [YHA+16; YWZ+09]. Some systems, such as Riverbed [WKM19]
avoid some usability and performance pitfalls but impose limitations on application functionality, such as

separating user data into separate universes.

Compile-time enforcement approaches to IFC statically guarantee policy compliance. Application
developers define their policies in a single, reviewable location and associate them with data. The compiler
then checks that the program’s execution cannot violate policies. Policies can range from classic IFC
noninterference (e.g., enforced through Rust types in Cocoon [LTB+24]) to more complex policies over
SQL databases and their schemas (e.g., in Ur/Flow [Chl10a], or via refinement types in Storm [LKB+21]).
The latter approaches can express data-dependent policies, but only if they are exclusively defined
via relationships over the database schema. They also require implementing applications in niche or

specialized languages, such as Ur/Web [Chl10b] or LiquidHaskell [LKB+21], which limits adoption.

Dynamic policy tracking systems taint data with policies and maintain these taints with a modified
language runtime. The runtime maintains a policy taint for every variable, propagating and combining the
policy taints as the program runs. Developers write policies declaratively over a data model [YHA+16]
or attach them dynamically to data [YWZ+09], and the runtime checks the associated policy before

application sinks externalize tainted data. Runtime tracking imposes high performance overheads (e.g.,

18

33% [YWZ+09] to 75% [YHA+16]) and requires the use of interpreted languages, but minimizes

developer effort.

Privacy Enforcement For Privacy Laws. Some recent systems specifically target enforcing policies
mandated by privacy laws, such as purpose limitation. For example, RuleKeeper [FBS+23] combines
static analysis of JavaScript code with runtime policy enforcement, but its static analysis is not sound and
can miss policy violations. RuleKeeper protects against violations at limited components, e.g., HTTP

endpoints and database queries, but not against accidental leaks or custom sinks (e.g., logging, file I/O).

Paralegal [AZZ+25] is a static analyzer for finding privacy-related bugs in web applications. Applica-
tion developers use Paralegal by annotating code elements with markers, while policy engineers state a
high-level policy specification that refers to these markers. Paralegal then statically checks the application
code with respect to the specification by constructing and analyzing a corresponding program dependence
graph (PDG) and reports any violations it finds back to the developer. Paralegal does not introduce any
runtime overhead, as it relies on a purely static approach. It also does not require application modification.
However, whether Paralegal is sound or complete depends on the policy being checked. Furthermore,
Paralegal’s policies are abstract and depend on the informal semantics attached to code markers. For
example, Paralegal can check that user data flows into a deletion-marked routine, but it cannot check
whether that routine is correct (or automatically synthesize a correct routine). It can also check for static,
but not dynamic, access control and purpose limitation policies, e.g., that a data type never flows to some
undesired purpose, but not conditionally based on dynamic user consent or only after aggregation with

data from sufficiently many other users.

PrivGuard [WKN+22] uses static analysis and runtime mechanisms to enforce privacy policies.
PrivGuard aims to reduce human participation in auditing and reasoning about compliance of programs,
but targets a narrow set of Pandas-like data analytics programs. PrivGuard ensures that programs
submitted by analysts (e.g., medical researchers), and executed by data curators (e.g., hospitals with

patient data), meet baseline privacy policies mandated by privacy regulations.

This Dissertation. In this dissertation, we present two systems: K9db §3 and Sesame §4.

In contrast to existing work (e.g., DELF), K9db helps developers comply with both deletion and

access requests. It also meets other storage requirements, such as encryption at rest, while providing

19

developers with the familiar interface of an SQL database. K9db redesigns the database to make correct

privacy compliance a first-class property, without sacrificing performance and with moderate overhead.

Sesame aims to ensure that applications meet their desired custom privacy policies while reducing
developer effort, application changes, and performance overhead. Sesame targets end-to-end enforcement
of flexible, data-dependent policies for applications written in a widely used mainstream programming
language (Rust). This means that Sesame can express richer policies than static enforcement systems,
including policies that rely on dynamic information about the data or application, and makes it easy
to adopt. Sesame achieves this without a custom taint-tracking runtime, in the presence of third-party

libraries, with limited extra burden for developers, and at low overhead.

Furthermore, we show how applications can use K9db and Sesame in tandem to meet storage and
processing requirements (§5). Both systems are guaranteed to be sound with respect to the policies
specified by application developers. Together, K9db and Sesame provide strong end-to-end enforcement.
For example, they protect against accidental leaks in custom sinks, unlike RuleKeeper. Furthermore, they
provide more concrete guarantees than Paralegal, such as correct deletion of user data, including dynamic

policies, such as those governing user consent or data aggregation.

2.2.2 Privacy-Conscious Systems Beyond Compliance

Privacy Enforcement in Untrusted Applications. Unlike earlier work described in the previous
section, which aims to help application developers comply with desired privacy policies, this style of
work guarantees to end-users that an application meets some privacy policies even when the application

is untrusted and in some cases outright malicious.

Ryoan [HZX+16] has a strong threat model: it trusts neither the application nor the underlying
cloud platform and assumes that both may be actively malicious and even colluding. Ryoan leverages
sandboxing and trusted hardware enclaves to protect sensitive data. Furthermore, it assigns IFC-like
security labels to data when it flows between remote services, in order to extend its guarantees to
untrusted distributed applications. However, these strong guarantees come at significant runtime costs
that render Ryoan impractical for most applications, and this adversarial threat model goes well beyond

the requirements set forth by privacy laws.

Zeph [BKV+21] relies on cryptography to restrict the computations that a service can perform on

20

sensitive data from end users and data providers. Users submit their data along with their desired privacy
policies, and Zeph ensures that any transformations applied to it are consistent with and allowed by the
input privacy policies before releasing the output, while ensuring that data remain end-to-end encrypted.
Zeph protects against an honest but suspicious service, i.e.,, a service that performs the computation
correctly but monitors all communications and intermediaries to learn any information it can about the
data. Because its threat model is weaker than Ryoan, Zeph exhibits better performance. However, it only

supports restricted classes of numeric computations (e.g., streaming sums).

Cryptographic Secure Computation. Cryptographic primitives such as fully homomorphic encryption
(FHE) [Gen09] and secure multiparty computation (MPC) [BGWS88; Sha79; Yao86] allow mutually
distrusting parties to compute desired functions over sensitive private user data. Various existing systems
provide implementations of these techniques for general-purpose computation [ACC+21; BLWOS;
DIL+19; LWN+15]. They have been used to outsource the computation of various statistics to untrusted
parties [BCD+09; LID+18]. However, a larger adoption of these systems faces several usability and

performance challenges [HHN+19].

Recent systems provide domain-specific implementations of these techniques with better perfor-
mance and usability. This includes systems for privacy-preserving SQL queries [VSG+19], time series
analysis [FZL+23], private information retrieval [DIV+22; KC21], private Internet search [ASA+21;
HDC+23], data analysis [MNL+23; PKY+21; RZH+20]. However, the performance of these systems
remains much worse than their non-private and non-cryptographic counter parts, and while they offer
strong data security guarantees in the presence of untrusted, or even malicious, parties, they are not
comparable to the requirements of privacy laws. Laws rely on legal enforcement and fines, rather than
formal cryptography, to deter malicious behavior, but aim to provide ensure user consent is respected and
that users have control over their data and its uses. This is orthogonal to the cryptographic guarantees of
MPC when data providers do not participate in the computation, as is often the case for performance and

robustness.

Differential Privacy. Differential privacy (DP) [DMN+06] ensures that aggregates do not reveal too
much information about individuals in their input sets, by adding noise from a carefully configured
distribution prior to releasing the aggregate. Continuously computing and releasing aggregates over

the same or overlapping datasets increases the leakage proportionally. Often, analysts must track this

21

total privacy loss to ensure that it remains below a desired privacy budget attached to the data. DP has
seen increasing adoption in practice, for example in the US Census [Abo18]. DP is complementary to
the goals and mechanisms of many of the systems described above. Recent systems help applications
implement DP correctly by automatically tracking and checking privacy budgets e.g., in streaming

applications [LPT+21] and for targeted advertisement [TKM+24].

Decentralized Systems. Other proposals have advocated for a radical restructuring of web services to
enforce users’ privacy rights, but face barriers to adoption. Decentralized systems decouple data storage
from the web application and put data storage under user control. Solid [MSH+16] allows users to
store data in pods under their control and provides a set of APIs and protocols so that web applications,
running in an end-user browser, can retrieve data from that user’s and related users’ pods and process it.
Nostr [Nos23] provides a censorship-resistant decentralized platform for micro blogging, where users
store replicas of their content across many relays, some of which may be under the control of that user.
Decentralization gives users control of their data, but requires rewriting web applications, comes with
restrictions (e.g., all application logic must run in JavaScript in the browser), and is incompatible with
today’s advertising-based business model for web services. Furthermore, decentralization may make
compliance with certain requirements from privacy laws trivial for some applications e.g., when every
user hosts their own dedicated Solid pod over which they maintain complete control. However, it may also
make compliance more challenging in other scenarios e.g., when data belonging to one user is replicated

across many Solid pods or Nostr relays outside of that user’s control.

22

CHAPTER 3

K9db: Privacy-Compliant Storage For Web Applications

In this chapter, we present K9db, a new SQL database that helps application developers comply
with subject access requests, which are mandated by privacy laws. K9db’s key idea is to make the data
ownership and sharing semantics explicit in the storage system. This requires K9db to capture and enforce
applications’ complex data ownership and sharing semantics, which application developers express using
a small set of schema annotations. K9db infers storage organization, generates procedures for data
retrieval and deletion, and reports compliance errors if an application risks violating the requirements
of privacy laws. Our K9db prototype successfully expresses the data sharing semantics of real web
applications, and guides developers to getting privacy compliance right. K9db also matches or exceeds

the performance of existing storage systems, at the cost of a modest increase in state size.
3.1 Motivation

As discussed in §2.1, privacy laws provide users with rights to issue subject access requests (SARs),
including a right to access, which lets users request a copy of their data, and a right to erasure, which

requires its deletion on request.

Achieving compliance can be onerous and expensive, however, particularly for small and medium-
size organizations. These organizations must write custom queries and track metadata to identify
and extract data related to a user, and continuously maintain this infrastructure as services evolve.
Even well-intentioned developers sometimes get it wrong: for example, the ownCloud collaboration
platform [own21b], though it claims GDPR compliance [own21a], retains a user’s activity log after
account deletion. Retrofitting compliance onto existing systems is tricky, as it still requires manual

work [AGJ+21; LCG+21] and may harm performance [SBW+20].

23

Compliance with SARs is difficult, both manually and in automated systems, because web services
often have complex ownership and data sharing semantics. Identifying data associated with a particular
user (“data subject”) is challenging. In relational databases, these associations are expressed as foreign
keys; but data in many tables link to data subjects transitively via one or more intermediate tables, rather
than directly. Multiple data subjects can be associated with the same data (e.g., private messages), and
sometimes this association is asymmetric and implies different rights for different data subjects (e.g., a
teacher and a student). Finally, many-to-many relationships introduce dynamically changing associations

between data and a variable number of data subjects.

GDPR-like laws afford companies with some flexibility in handling SARs. Applications may keep
data associated with the data subject (possibly in some anonymized form) after a deletion request due to
legal or contractual obligations (e.g., tax laws) or public interest [GDPRI16, Article 17.3]. Data may also
be retained depending on the purpose of its processing, including the interests of other users (Article 6.1,
Article 17.1(b)). For example, Facebook’s privacy policy specifies that Facebook deletes the comments
that a withdrawing data subject made, but not the private messages they sent to a friend, unless that friend
also deletes them [Fac]. Thus, the compliance policy and exact handling of SARs are application and

data dependent.

We explore a new system design that achieves privacy compliance by construction. Our key idea is to
make data ownership a first-class citizen in the database system itself. K9db, our new database system,
tracks sufficient information to know, for each row in the database, what user (or users) have rights to it.
This allows K9db to infer correct procedures for data retrieval and deletion, so that the database itself can
handle requests under the rights to access or erasure, freeing the application developer from having to
write or maintain custom scripts to handle these requests. The ownership information also allows K9db to
encrypt data with per-user keys, which helps meet, e.g., the GDPR’s “Protection by Design and Default”
requirement, which can be satisfied by encrypting at-rest data [GDPR16; NA15]. Finally, K9db uses

ownership information to generate errors if the database schema or operations on database contents risk

violating the GDPR.

To realize K9db, we had to address three challenges. First, K9db must understand and model the
complex data ownership and sharing semantics of real applications. A user’s data may span many tables

with transitive relationships, may be shared in complex and data-dependent ways, and may require partial

24

redaction when returned or removed. Second, K9db must maintain and enforce compliance invariants
matching these ownership semantics throughout application execution, and correctly respond to user
access and deletion requests. Third, K9db should match the performance of today’s databases that lack
infrastructure for data ownership tracking, and must be both compatible with existing applications and

easy for application developers to adopt.

K9db’s design addresses these challenges as follows. First, K9db derives a data ownership graph
(DOG) from a set of coarse-grained, declarative annotations on the database schema. Using a small
number of primitives, the DOG models a wide range of complex data sharing relationships found in
real-world applications. The DOG is central to K9db’s storage organization, to its handling of users’
access and erasure requests, and to K9db’s ability to enforce privacy compliance. Second, K9db organizes
data storage around data ownership to ensure that applications remain in compliance and handle access
and deletion requests correctly by construction, without disrupting regular application operations. Third,
K9db is a MySQL-compatible drop-in-replacement for existing databases, and requires few application
changes beyond declarative schema annotations for normalized schemas. To accelerate complex queries,
K9db provides an integrated, privacy-compliant in-memory cache based on materialized views. By
integrating and managing materialized views, K9db provides the benefits of caching to applications, while

relieving developers from ensuring compliance of cached data.

K9db structures the actual data storage as a set of user-specific logical “micro-databases” (uUDBs),
realized over a single physical RocksDB [Met22] store. Each user’s uDB contains the data they own, and
is encrypted with a user-specific key. K9db also helps developers use the system correctly by providing
compliance-specific functionality not found in other databases. A new EXPLAIN COMPLIANCE SQL
command gives the developer insight into the DOG and highlights possible schema annotation errors;
and K9db supports compliance transactions that guard against dynamic compliance problems, such as
data without an owner being left behind in the database. K9db provides ACID guarantees similar to those

in default MySQL.

K9db provides out-of-the-box compliance for well-intentioned developers who want to comply with
privacy laws, and helps developers avoid mistakes. We expect that fines for privacy violations (e.g., the

greater than 4% of annual turnover or €25M for GDPR violations) discourage intentional misuse.

In summary, we make the following contributions:

25

Feedback EXPLAIN Data Ownership K9db
.~ | COMPLIANCE | | Graph O

gD I ofe

Schema + \ determines
Annotations o X .
maintains Compliant Storage
Pl Organization
: Secondary
Views Indexes Compliance
. Transaction
Queries \ Y
MySQL API -

Figure 3.1: K9db provides privacy-compliant storage based on its data ownership graph, micro-databases
(uDBs), and compliance helper mechanisms behind a MySQL interface.

1. The data ownership graph (DOG) for modeling ownership in a database, specified with schema

annotations.

2. K9db, a new database that enforces compliance-by-construction based on the DOG and a compliant,

ownership-aware storage organization.

3. Mechanisms that, based on the DOG, warn developers if schema annotations are insufficient or if

the database becomes non-compliant at runtime.

4. An evaluation of K9db, demonstrating that a database centered around first-class data ownership

and compliance-by-construction is practical.

We evaluate K9db with scenarios based on the Lobsters web application [Lob18b], the ownCloud
document sharing platform [own21b], and the Shuup e-commerce platform [Shul8]. Our experiments
show that K9db can express a wide variety of nuanced data sharing and ownership patterns found in
these applications, and that K9db performs on-par with or better than MariaDB and the widely-used

MariaDB/memcached stack when serving typical web application workloads.
3.2 K9db Overview

K9db is a relational database that makes data ownership an explicit first-class citizen. K9db targets
typical web application workloads, which are dominated by reads and point lookup queries [GSB+18].
Its design goals are (i) to require few changes to application code, (ii) to capture and enforce the complex

data ownership and sharing semantics of real-world applications, and (iii) to provide feedback that helps

26

developers get privacy compliance right.

Figure 3.1 shows an overview of K9db’s components. K9db requires developers to extend their
relational schema (i.e., CREATE TABLE statements) with a small set of annotations that encode data
ownership and sharing semantics. The annotated schema acts as an application-specific compliance
policy that specifies how K9db handles SARs. From these annotations, K9db builds its key abstraction,
the data ownership graph (DOG) (§3.3). The DOG lets K9db determine, for every row in the database,
who owns it and who has rights to it. K9db uses the DOG to satisfy data subjects’ SARs, to check that
the database remains compliant after the application makes changes, and to warn the developer if their

annotated schema and the compliance policy it encodes seem incomplete or contradictory.

Using information from the DOG, K9db organizes its storage in a user-centric way, storing each
data subject’s data in their own logical “micro-database” (UDB), a shard of the actual database. This
design ensures that K9db enforces the developer-provided compliance policy by construction, lets K9db
encrypt each data subject’s data with a separate cryptographic key, and speeds up compliance-related
enforcement and operations (§3.4). K9db maintains some additional secondary indices compared to a
traditional SQL database, which help K9db efficiently resolve which uDBs store particular data. It also
maintains materialized views that help simplify and accelerate execution of complex queries, while also

providing an integrated, privacy-compliant in-memory cache (§3.5).

For normalized schemas, K9db requires little to no application code changes, except that developers
may need to wrap certain operations in a compliance transaction (§3.4.5). Developers can use K9db as a

drop-in replacement for MySQL.
3.3 Modeling Data Ownership and Sharing

K9db aims to provide correct-by construction compliance with privacy laws, which requires K9db to
respond to SARs correctly and enforce several invariants over the data and its storage. Correct compliance
has two prongs: (i) a compliance policy that is consistent with the privacy law in question, and (ii) correct

enforcement of this policy when handling both regular application operations and SARs.

The compliance policy is application-specific and depends on the relationships in the underlying data.
For a single application, multiple policies may achieve compliance, and laws afford developers some

flexibility in choosing a policy that matches their application’s semantics (§3.1).

27

(a) Ownership With FK. (b) Ownership Against FK.

Figure 3.2: K9db’s annotations on foreign keys (FKs; orange) indicate the direction of data ownership
(black edge) between two tables. Circles are tables.

Annotation Example

DATA_SUBJECT CREATE DATA_SUBJECT TABLE users (...)
T'a(x) OWNED_BY T'5(y) stories(author_id) OWNED_BY users(id)
T(x) OWNS T(y) member (gid) OWNS group(id)

T4 (x) ACCESSED_BY T'5(y) share(share_with) ACCESSED_BY user(id)
Ta(x) ACCESSES Ts(y) taggings(tag_id) ACCESSES tags(id)

ON DEL T4(x) {ANON (...) | DELETE_ROW} ON DEL chat(receiver) ANON (receiver)
ON GET T4(x) {ANON (...) | DELETE_ROW} ON GET review(paper_id) ANON (reviewer_id)

Figure 3.3: K9db’s table and column-level annotations. All annotations except DATA_SUBJECT and ANON
imply a foreign key from column z in table T4 to column y in T'5.

In K9db, developers express their compliance policy using schema annotations, which K9db represents
using the data ownership graph (DOG): a directed, acyclic multigraph whose vertices represent database

tables, and whose edges represent ownership relationships between rows in the tables.
3.3.1 K9db’s Annotations

Developers use schema annotations on foreign keys to communicate their application’s data ownership
and sharing semantics to K9db. To communicate how the database represents human persons who have
rights over data (“data subjects” in GDPR terms), the developer annotates one or more tables with the

table-granularity DATA_SUBJECT annotation.

Foreign keys (FKs) relate rows in tables to each other, and often imply ownership—consider e.g., a
story pointing to its author. This is the simplest case: a story is owned by the row its FK value points to.
K9db provides the OWNED_BY keyword for developers to annotate such FKs (Figure 3.2a; §3.3.3 discusses
transitive cases). But foreign keys may also point in the opposite direction of ownership, as is the case
e.g., if a user table has a foreign key to their primary address. For such cases, K9db provides the OWNS

annotation (Figure 3.2b).

In addition to ownership, an application may also have data that is owned by one data subject (who
has the right to delete it when removing their account), but share it with others. For example, in the file

sharing platform ownCloud [own21b], users want to share files with others, but when they remove their

28

account have the file be removed for everyone. K9db lets developers express this with the ACCESSED_BY

annotation, and its dual for opposite-direction FKs, ACCESSES.

These annotations extend the semantics of foreign keys with compliance semantics, and while every
annotation is applied to a foreign key, not every foreign key impacts ownership or needs to be annotated.
For example, the foreign key connecting students in a university database with their declared majors

carries no ownership information—the students do not own the majors—and should not be annotated.

KO9db also provides table-level annotations that allow developers to specify that columns in a table
need anonymizing in the context of SARs. This is important because a row may need redacting before
returning the row as part of a right-to-access request (ON GET), or because a row may need to be retained
in anonymized form (e.g., for tax compliance) after a data subject requests deletion of their data (ON DEL).
Each anonymization annotation is associated with an ownership or access foreign key (i.e., an outgoing
edge from the table in the DOG). This allows for different anonymization behavior depending on how the
data subject who issued a SAR is connected to the data. For example, in the HotCRP conference review
system [Koh06], if a data subject who is both a reviewer and an author makes an access request, they
should receive an unredacted copy of the reviews they wrote, but redacted, anonymized reviews for the

papers they authored.

Figure 3.3 shows K9db’s complete set of schema annotations.
3.3.2 Expressing Developers’ Compliance Policies

We demonstrate how developers annotate their schema to express their desired compliance policy
using two examples extracted from real applications: stories and messages in Lobsters (Figure 3.4), and

file sharing in ownCloud (Figure 3.5).

In Lobsters, developers begin by annotating the users table, which records the application’s end-users,
with DATA_SUBJECT. A user may post several stories, and retains sole ownership of them: these stories
must be retrieved or deleted when the user issues an SAR. Developers express this by annotating the
author FK in stories with OWNED_BY. Lobsters also has a set of tags that represent discussion topics,
e.g., games and programming. Users can assign tags to stories they posted, and have complete ownership
of these associations. Developers express this by annotating the story_id column in taggings with
OWNED_BY. This makes the story the owner of its taggings, transitively making the data subject who owns

the story (i.e., its author) the owner of the associated taggings. But the tags themselves are not related to

29

5

4
5
6
8
9

=

S S s C EoR =3

CREATE DATA_SUBJECT TABLE users (id INT PRIMARY KEY, ...);
CREATE TABLE stories (
id INT PRIMARY KEY, title TEXT,
author INT NOT NULL OWNED_BY user(id)
)
CREATE TABLE tags (id INT PRIMARY KEY, tag TEXT, ...);
CREATE TABLE taggings (
id INT PRIMARY KEY,
story_id INT NOT NULL OWNED_BY stories(id),
tag_id INT NOT NULL ACCESSES tag(id)
K
CREATE TABLE messages (
id INT PRIMARY KEY, body text,
sender INT NOT NULL OWNED_BY user(id),
receiver INT NOT NULL OWNED_BY user(id),
ON DEL sender ANON (sender),
ON DEL receiver ANON (receiver)
H

Figure 3.4: Partial schema for Lobsters. Users own the stories they authored and their associations with
tags. Messages are jointly owned by both sender and receiver.

any data subject. Thus, developers annotate tag_id with ACCESSES (and not OWNS). As a result, a data
subject receives a copy of their stories and associated tags when they request access, while disassociating

tags from their stories and removing the stories themselves when requesting deletion.

Similar to private messages in Facebook [Fac], messages in Lobsters are only deleted when both sender
and receiver request deletion. Thus, developers annotate both sender and receiver with OWNNED_BY
(i.e., joint-ownership), along with anonymization annotations that instruct K9db to hide the identity of
the associated withdrawing user in surviving messages. An alternative policy could require deleting a
message as soon as one of the associated users is deleted. Developers can express this via an ON DEL ...

DELETE_ROW annotation.

ownCloud’s data subjects are users in the user table, who can be members of a group (in the group
table), as defined by the member association table. Users own their group memberships, so the developer
annotates the uid column of member with OWNED_BY. The group and its associated resources are jointly
owned by its members (ownCloud has no notion of group admins). Hence, the developer applies the

OWNS annotation to the gid foreign key from member to group.

ownCloud’s share table contains records of users sharing files with others. This table specifies the
file’s owner (i.e., its original creator) via the uid_owner column, which is a direct FK to the user table.

The developer thus annotates this column with OWNED_BY. The share_with and share_with_group

30

| CREATE DATA_SUBJECT TABLE user (id INT PRIMARY KEY, ...);
> CREATE TABLE group (id INT PRIMARY KEY, title TEXT, ...);
3 CREATE TABLE member (

4 id INT PRIMARY KEY,

5 uid INT NOT NULL OWNED_BY user(id),

6 gid INT NOT NULL OWNS group(id)

75

s CREATE TABLE share (

9 id INT PRIMARY KEY, ...

0 uid_owner INT NOT NULL OWNED_BY user(id),
I share_with INT ACCESSED_BY user(id),
share_with_group INT ACCESSED_BY group(id)

Figure 3.5: Partial schema for ownCloud file sharing: users own their group membership, which owns the
group; files have an owner and are shared with users who have access to them.

::: * : : ::: * : n 1 :
(a) Transitive Ownership. (b) Variable Ownership.

Figure 3.6: Tables can have transitive ownership relationships (*: zero or more steps of indirection); if
an edge follows a one-to-many or many-to-many relationship, it expresses variable ownership. Double
circles indicate data subject tables.

columns are also FKs that eventually lead to the user table, but indicate that the file is shared with (rather

than owned by) these users. The developer therefore annotates them with ACCESSED_BY.
3.3.3 Data Ownership Graph

K9db builds the DOG from developers’ annotations by inserting DOG edges in the underlying FK
direction for OWNED_BY and ACCESSED_BY, and against the FK direction for OWNS and ACCESSES. Thus,

DOG edges always point towards a data subject table, unlike foreign keys.

When tables have a chain of annotated foreign keys, K9db adds an edge to the DOG that establishes a
transitive ownership relationship (Figure 3.6a). For example, in Lobsters (Figure 3.7), a story’s taggings
have no direct references to the story’s author. Instead, they refer to their story (2), which in turn refers to

the author (1). Therefore, edges in the DOG always represent a single step towards a data subject.

The DOG is a multi-graph because two tables can have multiple foreign keys between them. For
example, in Lobsters the messages table has two foreign keys, one to the sender (4) and one to the
receiver of a message (5). Since sender and receiver jointly own a private message—i.e., the message

only disappears if both users delete their account—there are two annotated edges between messages and

31

messages users stories taggings tags
1 nfﬁ\} n N 1
O / / O

"% @ @ ®

Figure 3.7: The DOG for stories and messages in Lobsters. Red indicates access-typed edges; 1 and n
are cardinalities.

member

1
share group

Figure 3.8: The DOG for ownCloud file sharing. Red edges are access-typed. Note the variable ownership
(Fig. 3.6b) between member and group, as member rows are the group’s owners.

users.

Access annotations on foreign keys also add edges to the DOG, but these edges are access-typed
and distinct from owner-typed edges. For example, in ownCloud (Figure 3.8) a file is accessible but not
owned by users it is shared with, either directly (6) or via a group (7). Differentiating ownership and

access edges is important for K9db to correctly handle access and deletion requests.

If the destination of a DOG edge can contain multiple rows corresponding to a single row in the
source table, then that row can have multiple owners or accessors. The DOG edge (8) from ownCloud’s
group to member is a one-to-many relationship, so a group may have many owners. This is an example of
variable ownership (Figure 3.6b), as the number of owners varies depending on the data (i.e., depending
on the rows in member). Similarly, DOG edges may also express variable access, e.g., a single tag in
Lobsters may be accessed through many stories (3). This contrasts with the typical situation where the
destination of a DOG edge is a primary key or unique column, making it a one-to-one or many-to-one
relationship, both specifying a single owner (e.g., @ and). K9db’s DOG metadata stores arity of

relationships and K9db handles variable ownership and access appropriately.
3.3.4 Helping Developers Get Annotations Right

EXPLAIN COMPLIANCE gives the developer information about the DOG, including heuristic warnings
and suggestions about how it may be improved. K9db runs a simple heuristic over the schema to discover

9 ¢

column names which indicate user data such as variations on “name”, “email” and “password”. If a table

32

with such column names is not connected to a data subject in the DOG, K9db suggests to make it owned.
This heuristic is most useful to discover missing data subjects, as their tables often contain columns with

such names.

EXPLAIN COMPLIANCE also reports information that K9db derives from the DOG. For every table, it
reports which data subject tables own it, and the paths through the DOG by which they own the table.
This essentially shows the developer the closure over the DOG that K9db uses to handle SARs. EXPLAIN
COMPLIANCE warns developers if a table is owned by many data subjects, e.g., if a DOG path contains
multiple variable ownership edges, which can result in multiplicatively many owners. Such liberal sharing

is rare in practice and likely the result of a schema or annotation mistake.
3.3.5 Data Ownership Graph Properties

The DOG is well-formed if any path through it terminates at a data subject table. K9db rejects any

schema that results in a DOG that is not well-formed.

Although the DOG is a graph of tables, its edges represent relations between rows in the source and
destination tables based on the values of the underlying FK columns. Each DOG edge maps to a relation
between rows in the two tables, where matching rows in the destination table own (or access) the rows in
the source table. Intuitively, this relation can be evaluated as a query over the destination table, which
yields exactly the owning row (or rows, in the case of variable ownership). Well-formedness guarantees

that the transitive closure of these relations terminates at data subject tables.

Several key properties follow from this. First, if no matching rows exist in any destination table when
evaluating the relations along all of the table’s outgoing ownership edges, data is orphaned (i.e., has
no owner). This gives rise to the necessary (but insufficient') no orphaned data compliance condition:
any row in a database table connected to the DOG must resolve to >1 owning data subjects. Second,
the transitive closure of relations corresponding to ownership edges in the DOG, starting from any row,
identifies the set of data subjects that own this row. Third, the DOG’s reverse transitive closure starting

from a row in a data subject table yields:

1. the rows shared with and owned by that data subject, if considering accessor-typed and owner-typed
edges; or

2. the rows owned by that data subject, if considering only owner-typed edges.

'Sufficiency would require the correct owners, not just any owner.

33

The former set corresponds to the data that needs returning from a right-to-access request, and the latter

identifies the data that needs deleting for a right-to-erasure request, provided no other owners exist.
3.4 Compliant by Construction Storage

In principle, the DOG and its relations are sufficient to identify a data subject’s data, and one could
imagine adding it as a metadata layer over an existing database. But in practice, compliance is more
complex. Although the DOG identifies all data owned by a data subject, K9db needs to take the correct
actions on this data. For example, K9db must avoid prematurely deleting jointly-owned data, and deletion
must cover backups outside the live database. K9db must also have efficient ways to decide if a given
database operation will break compliance, e.g., by violating the no orphaned data invariant, something

that the DOG alone fails to provide.

K9db therefore introduces ownership as a first-class notion into the storage layer. This makes it simple
for K9db to handle SARs, and to enforce invariants that must hold for compliance. Specifically, K9db’s
storage layer is organized around per-data subject logical “micro-databases” (uUDBs), such that each uDB
contains all of its data subject’s owned data. For jointly-owned data, K9db stores copies of that data in

the uDB of every data subject that owns it.

This design has several advantages. First, it ensures data deletion is correct relative to the DOG. When
a data subject requests to delete their data, it is sufficient to delete their uDB. Data shared with other data
subjects survives as copies in the other uDBs. Second, this design provides an easy way to check whether
data is orphaned, as such data can only exist outside of all data subjects’ uDBs. Third, this design lets
K9db use a per-data subject key to encrypt data in each uDB. This simplifies deletion alongside external
and replicated backups of the data, as deleting the owner’s key makes all backups and copies inaccessible

(i.e., “crypto-shredding”).
3.4.1 Storage Layout and Logical uDBs

K9db determines the uDBs to store each row in using the DOG. In a well-formed DOG, every table
reaches at least one data subject table via its outgoing ownership edges. K9db splits the contents of such
a table into different uDBs, each of which contains the rows owned by a particular data subject, and
encrypts them with a key specific to that data subject. A table also includes an orphaned data section that
may be used temporarily within sequences of operations (§3.4.5). A data subject’s uDB therefore includes

rows from every table that stores data owned by them. Note that even though uDBs store physical copies

34

of rows that have multiple owners, they are a logical abstraction and realized over a single underlying

physical datastore (e.g., RocksDB in our prototype).

Viewing the datastore as a whole, a previously single row in a table may now be multiple rows due
to copies being stored in each owner’s uDB. The value of the primary key of that row refers to all these
copies. Internally, K9db identifies the different copies using a pairing of the data subject identifier (the

value of its primary key in the data subject table) and the value of the primary key in the row.

K9db maintains on-disk secondary indexes separate from tables and uDBs, which K9db uses to
execute queries efficiently. K9db creates an on-disk index for each unique and foreign key column and
for the primary key. K9db on-disk indexes differ from traditional database indexes in two key aspects:
they map keys to (uDB identifier, primary key), and they point to all copies of any jointly-owned row
that match the indexed key. K9db creates a special index for the primary key column(s) of owned tables,

which maps the PK value to data subject identifiers that own the corresponding row.

K9db stores tables unconnected to the DOG in the same way as other databases. Such tables contain
data that is not owned by any data subject, e.g., all available tags in Lobsters or all majors in a university
database, and thus are outside any uDB. Note that this is distinct from orphaned data, which are rows

without owners in tables that are connected to the DOG.
3.4.2 DB Integrity

The storage layer maintains an important invariant for compliance, uDB completeness: data owned by

a data subject is exactly identical to the data stored in their uDB.

To maintain pDB completeness, K9db must identify the uDBs to insert new data into, and correctly
apply application updates that change who owns rows. Changes to the data in a table may have cascading
effects on who owns data in dependent tables connected to this table via some ownership path in the
DOG. For example, changes to the member table in ownCloud affect who owns records in the group

table. K9db utilizes the DOG to handle these situations correctly.

Inserting Data. When K9db receives an INSERT statement, it uses the DOG to identify the owners of
this data. In particular, K9db analyzes the outgoing edges from the DOG vertex for the affected table.
For a direct ownership edge, the data subject identifier is already present in the new row in the form

of a foreign key. K9db determines this by introspection on the new row and without querying other

35

tables. If an edge indirectly leads to the data subject table, identifying the owner becomes more complex.
K9db can find the owner(s) by querying the database along the transitive edges between the table and the
data subject. But such a query may be expensive—for example, the DOG for the Shuup e-commerce
application [Shul8] contains a chain of five edges from the payments table to the owning data subject.
Instead, K9db memoizes the query by building and maintaining in-memory ownership indexes, which
essentially provide “shortcut” relations over the DOG that point directly to the owning data subjects. In

practice, K9db can often avoid or reuse ownership indexes (§3.5.1).

Cascading Updates. INSERT, UPDATE, or DELETE statements may have cascading effects on the
ownership of records in dependent tables. After applying such statements to their target table, K9db
identifies dependent tables from the DOG. It then queries the rows in each dependent table that match
the updated row. K9db moves or copies the matched rows between uDBs appropriately, and cascades
again into any further dependent tables. K9db requires no additional indexes to perform this matching
efficiently, as it can rely on standard on-disk indexes over foreign keys’ source and destination columns.

In many cases, K9db avoids cascades via optimizations based on foreign key integrity (§3.5.1).
3.4.3 Handling Subject Access Requests

K9db needs to handle two types of SARs: the right to access and the right to erasure. K9db handles
both with a similar high level procedure: (i) K9db traverses the DOG to identify all tables and edges
connected to the data subject; (ii) K9db finds the data owned by the data subject in their uDB; (iii)
K9db locates data accessed, but not owned, by the data subject in other uDBs; and (iv) K9db performs

anonymization as specified by the developers in the schema.

For either type of request, K9db identifies the data subject’s data by following paths in the DOG,
starting from the data subject table, and moving against incoming edges. A path that consists solely of
ownership edges signifies data owned by the data subject, while paths that contain one or more access
edges reflect accessed data. K9db locates the relevant rows in a table before moving on to any dependent
tables. For every incoming edge, K9db uses the rows it located in the parent table to identify dependent
rows in the dependent table. K9db finds these either in the same uDB for ownership paths, or in other

uDBs using on-disk indexes for access paths.

After traversing an edge and retrieving data in its source table, K9db selects the anonymization

annotations in the schema that apply to that edge. The anonymization annotations specify the columns to

36

group

member
- . gid | ..
o uid | gid
% ’\/VAN’\/\&/\/‘— o s
a B 2 z 2 A’s uDB
@ = 2 B’s uDB
A 2 @ ~~ M ~Orphaned region

START COMPLIANCE TX (3) Delete
(1) DELETE FROM member WHERE uid=A AND gid=1;

@ K9db applies cascading effect;
gid=1is orphaned COMPLIANCE BROKEN

(3) DELETE FROM group WHERE gid=1; COMPLIANCE RESTORED
COMMIT COMPLIANCE TX

Figure 3.9: K9db’s compliance transactions help developers check that the database is in a compliant
state after multiple operations (here, (1) deleting the last owner of a group, and (3) then deleting the
group). Without a compliance TX, K9db would report an error instead of applying step (2).

anonymize (e.g., the sender of a chat message). For access requests, K9db anonymizes retrieved rows
before sending them back to the client. On deletion requests, K9db removes the data subject’s uDB from
the database, and anonymizes any remaining copies of the data, which it locates in other uDBs using

on-disk indexes.
3.4.4 Atomicity, Consistency, Isolation, and Durability

A single SQL statement may result in several underlying operations over K9db’s storage, as it may
update rows in several uDBs or cascade over dependent tables. It is critical for compliance that we ensure
that these updates are all ACID, to avoid data races that could lead to a non compliant state (e.g., by
creating orphaned data, or breaking the uDB completeness invariant). Therefore, K9db executes every
SQL statement as a single statement ACID transaction (similar to MySQL). This includes all underlying
operations over any uUDBs and all updates to on-disk secondary indices or the integrated in-memory cache

(§3.5.2). Our prototype does not support general multi-statement SQL transactions yet (see §3.6).

K9db guarantees that concurrent SQL statements have repeatable reads isolation, which is the default
in MySQL. Any weaker isolation level is insufficient for compliance, as it cannot guarantee that K9db’s

compliance invariants hold in the presence of concurrent updates.
3.4.5 Compliance Transactions

An application may itself perform operations that risk violating compliance. Consider the example

from ownCloud shown in Figure 3.9: (1) the application deletes user “A”’s membership in group 1,

37

of which “A” is the last remaining member. This deletion from member has a cascading effect on the
dependent group table. Since the group with gid 1 no longer has any owners, K9db (2) moves it into the
table’s orphaned data region. This breaks compliance, as it violates the DOG’s no orphaned data invariant.
A correct application must now perform some operation that restores compliance, e.g., by deleting group

1 in a separate SQL operation, which (3) removes the orphaned row, restoring the invariant.

KO9db supports this pattern with the idea of a compliance transaction (CTX). A CTX wraps a set
of operations that may temporarily violate compliance, but commits only if the database is back to a
compliant state at the commit point. Within a CTX, K9db stores orphaned data in orphaned regions
attached to each table. On subsequent operations that reintroduce owners for this data, K9db migrates
the rows from the orphaned regions to the corresponding uDBs; if deleted, K9db removes the data. At
the end of a CTX, K9db ensures that every record moved to the orphaned region during the CTX has an

owner again (or was deleted), and produces an error to the developer otherwise.

Finally, K9db forbids statements that write to the orphaned region unless they are part of a CTX. In
particular, step (1) in Figure 3.9 will error unless contained in a CTX. This means that developers need
to modify applications that contain such patterns to use CTXs when necessary. Requiring such limited
modification is desirable, as disallowing compliance-breaking changes outside of CTX helps developers
identify issues and forces them to fix buggy and incompliant applications. For example, K9db would
reject a buggy version of ownCloud that does not clean up groups with no members (3). Introducing a
CTX allows an application to have benign temporary incompliance; if K9db instead required applications
to only perform operations that move the database between compliant states (e.g., deleting groups before

deleting their last member), it would likely require more substantial rewrites.

CTX are different from regular SQL transactions, which serve to ensure consistency under concurrent
execution. CTX are lightweight and required for compliance, while SQL transactions are expensive
and web applications often (but not always) avoid them. In a privacy-compliant database with SQL

transactions, each such transaction must also be a CTX.
3.5 Query Execution

When K9db executes a query, it must identify the uDBs affected to locate the relevant rows. Depending

on the operation, this may involve finding one or all copies of shared rows.
Queries that refer to a single table, such as DELETE and UPDATE statements, and most SELECT queries

38

issued by web applications (e.g., point lookups), run directly against K9db’s uDBs with the aid of on-disk
indexes. K9db analyzes the columns that appear in the WHERE condition of the query, and selects the index
that matches the most columns. Like other databases, K9db finds all the rows that may match the query
using the selected index, and then filters these rows with any remaining columns. If no index matches,
K9db runs a scan over the table. Developers may create additional indexes using CREATE INDEX, similar

to traditional databases.

When data has multiple owners, an index may refer to multiple copies of the same row. For DELETE
and UPDATE, K9db atomically operates over all these copies, ensuring that all copies are consistent.
K9db may need to remove or add some of the affected rows from/to uDBs, and may need to cascade
into dependent tables as described in §3.4.2. For SELECT queries, K9db identifies a single copy of
each matching row and skips any remaining index entries for other copies. This avoids overheads for

deduplicating copies of the row.

K9db serves some complex SELECT queries from materialized view, described in §3.5.2.
3.5.1 Optimizations

KO9db speeds up query execution and reduces its memory footprint with a set of optimizations designed
to avoid deep cascades and to reduce the number of in-memory ownership indexes (§3.4.2) required. Some
of these optimizations rely on foreign key integrity, which K9db enforces (like many other databases) to
prevent application operations that result in dangling foreign keys. With FK integrity, rows cannot be
inserted into a table if they contain references to non-existent rows in a destination table, and rows in the

destination table cannot be deleted as long as source table rows refer to them.

Avoiding Cascades. K9db needs to cascade into dependent tables along incoming DOG edges to update
dependent rows affected by a write (i.e., those owned by a modified row). But FK integrity guarantees that
no such rows exist when K9db handles INSERT and DELETE queries to a table 7 that is the destination of
a FK from a dependent table. This lets K9db skip cascades along 1”s incoming DOG edges if the edge is

in FK direction; otherwise, K9db must cascade.

Ownership Indexes. K9db relies on two techniques to reduce the number of ownership indexes. First,
multiple incoming DOG edges that require an ownership index and point to the same column of a table

(usually the primary key) may reuse the same index. Second, K9db omits ownership indexes for edges

39

in the DOG that correspond to OWNS annotations, such as the edge from group to member in ownCloud.
These edges point in opposite direction to the underlying foreign key. FK integrity ensures that a row
must exist at the source of such an edge (e.g., group) before any rows referring to it can be inserted to
the destination table (e.g., member). Hence, K9db always inserts new rows from the source table into the
orphaned region, and defers moving them to the correct uDB to future inserts into destination tables in
the DOG (which must cascade), as discussed in §3.4.5. These optimizations, for example, help K9db
create only one ownership index for Lobsters (which gets re-used three times), and avoid the need for any

ownership indexes in ownCloud.

Queries With Inlined Owners. SQL Statements sometimes directly refer to the owner of their target
rows, e.g., by constraining a foreign key that corresponds to an ownership edge in the DOG. Queries that
fit this pattern are common in the web applications: e.g., in Lobsters, SELECT * FROM stories WHERE
author = ? selects stories by their author, which is an annotated foreign key to users. K9db detects
this situation by statically analyzing the WHERE condition and determines the relevant uDB without an

on-disk index lookup.
3.5.2 Materialized Views

K9db serves complex SELECT queries, such as joins, aggregations, and those that reorder data, from
materialized views. This design makes sense for two reasons. First, it is simple and avoids the need
to engineer a sophisticated query planner that understands the nuances of ownership and indexes to
efficiently execute these queries over K9db’s uDBs. Second, developers often cache the results of complex
SELECT queries in external systems (e.g., memcached). Privacy compliance while using an external
cache requires setting appropriate expiration policies for the cache [YYR21, §4.5] or explicit invalidation
of cache entries related to a data subject if they request deletion of their data. This can be painful for
developers and may require manually tracking metadata, e.g., when caching aggregates over many data

subjects’ data. Instead, K9db provides an integrated privacy-compliant cache using materialized views.

When K9db receives a complex SELECT query for the first time, it creates a materialized view and
serves further instances of the query from it, until the view is removed or times out. K9db keeps the
materialized views up to date via an incremental, streaming dataflow computation triggered by writes
to uDBs, as well as uDB deletion. This makes inserts, updates, and deletes more expensive, but speeds

up reads. K9db updates the materialized views atomically prior to acknowledging the corresponding

40

operation to the client. This, along with our storage layer, ensures repeatable reads isolation for concurrent

operations whether cached or not.

KO9db’s ownership indexes are special-case materialized views, maintained with the same dataflow

infrastructure.
3.6 Implementation

Our K9db prototype consists of 35k lines of C++, 500 lines of Rust, and 2k lines of Java. It relies on
RocksDB for uDB storage, on Apache Calcite [BCH+18] for query planning, and on libsodium [Den13]
for encryption. Our implementation is similar to the MyRocks MariaDB storage engine [Mar22], but

extends it with compliance and uDB capabilities.

MySQL Compatibility Layer. K9db exposes a MySQL binary protocol interface, so unmodified
applications can treat K9db as a MySQL server. The interface to K9db’s materialized views is primarily
through prepared SQL statements: when an application registers a prepared statement, K9db creates a
view if necessary and serves future executions of the prepared statement from it. Developers can also

create additional views manually.

Storage. K9db relies on RocksDB for persistent data storage. Each table in the schema is a RocksDB
column family. Rows in K9db are keyed by a combination of their owner and primary key, to uniquely
identify each owner’s copy of a row. Our prototype stores rows ordered by their owner identifier, and
uses that identifier as a RocksDB prefix. This allows it to extract and delete uDBs using RocksDB prefix
iterators. Our prototype creates and maintains on-disk indexes as RocksDB column families, and formats
their content to allow writes to retrieve all the copies of a row, and reads to retrieve a single arbitrary copy,

skipping the rest. Like MySQL, K9db creates indexes for primary, unique, and foreign keys.

An earlier version of K9db used MySQL for uDB storage, but its default storage engines do not scale
to the number of tables or databases needed for K9db. (The MySQL community is actively working on

this, motivated by GDPR compliance use cases [Rub18].)

Encryption at Rest. K9db uses hardware-accelerated AES256-GCM to encrypt all data in a uDB
with the key of its owner. The key (uUDB identifier, primary key) associated with every row is encrypted

deterministically with a global key to allow consistent lookup. This has leakage, but is sufficient to

41

satisfy the GDPR’s “security of processing” requirement (Art. 32), which is often interpreted to require
encryption of data at rest [Ama23]. It is possible to use blind indexes [Arc17] which also allow consistent
lookup but reduce leakage. K9db’s design is independent of the particular encryption scheme used,
and can benefit from future advances in searchable encryption. Information in materialized views and
secondary indexes remains unencrypted, but K9db deletes it when deleting a user’s data. K9db destroys

the decryption key when a user removes their account, making any remaining backups inaccessible.

ACID. K9db executes each application SQL statement in a RocksDB transaction, which is based on
row-level locking. This includes all updates to secondary indices (similar to MyRocks) and all uDBs and
cascade operations. As in MyRocks, K9db serves reads from a consistent RocksDB snapshot. K9db also
updates all relevant materialized views prior to committing. Unlike MyRocks, K9db enforces foreign key
integrity and appropriately locks FK targets during execution. Overall, this ensures that concurrent SQL
statements are atomic and consistent with repeatable reads isolation, which is the default in MySQL and

MyRocks.

View Updates. K9db’s materialized view updates follow a standard design akin to differential
dataflow [MMI+13a; MMI+13b] and Noria [GSB+18]. Each table in the schema is associated with an
input vertex in the dataflow graph, and when K9db performs updates to a table, it injects the updates into
its dataflow input vertex. The dataflow processes the updates through a sequence of operators to derive
an incremental update to the materialized view (or secondary index), and applies this update. Dataflow
operators are stateless (e.g., projections, filters, unions) or stateful (e.g., joins, aggregations). K9db’s

materialized views are indexed for ordered and unordered lookups.

Limitations. Our prototype lacks support for general, multi-statement SQL transactions. These are
rare in web applications, and can be supported using existing RocksDB primitives and techniques for
versioned dataflow processing [MLS+20; MMI+13b]. While our prototype does not yet support schema
changes, RocksDB is schema-oblivious, and our prototype’s storage layer could be extended to support
schema changes with some engineering effort, using similar techniques to MyRocks. Finally, K9db’s
dataflow graph operators sometimes store copies of a record; by using a record pool, our prototype’s

memory footprint could be reduced.

42

3.7 Evaluation

We evaluate K9db with three applications, Lobsters [Lob18b], ownCloud [own21b], and Shuup [Shul8].

We ask three questions:

1. What is K9db’s impact on end-to-end application performance? (§3.7.1)
2. What is the impact of K9db’s design features on performance? (§3.7.2)

3. What effort by application developers does using K9db require? (§3.7.3)

We run experiments on a Google Cloud n2-standard-16 VM, storing databases on a local SSD. Our
baselines use MariaDB v10.6.5 (a MySQL fork) with the RocksDB-based MyRocks storage engine, and

memcached v1.6.10.
3.7.1 Application Performance

We start by analyzing K9db’s performance with two applications: Lobsters and ownCloud.
Lobsters

Lobsters (lobste.rs) is an open-source discussion board, similar to Reddit. Lobsters currently lacks
GDPR compliance [Lob18a], and has a schema that consists of 19 tables, which store posts, comments,
nested replies, upvotes, invitations and other information. We annotated this schema for K9db with three
DATA_SUBJECT tables, 14 OWNED_BY, one ACCESSES, and two anonymization annotations (details in
§3.7.3). We use an existing open-source, open-loop benchmark for Lobsters based on public workload
statistics [Har18]. The benchmark models ten endpoints in the Lobsters webapp that correspond to
different pages and each issue between six and fifteen SQL queries, most of which are reads. We load
the database with data that models the current production Lobsters deployment (15k users, 100k stories,
313k comments, and 416k votes) [Har18]. K9db therefore maintains 15k logical pDBs in this experiment.
We compare MariaDB, and K9db with and without data encryption. (Encryption with per-user keys isn’t
possible in the MariaDB baseline.) Lobsters on most requests runs an expensive query to determine the
user’s recently read stories. This query joins four tables, including the (large) stories and comments tables.
This query is slow in MariaDB (/~30ms) and dominates its latency for all endpoints, while K9db serves
this query from a materialized view. To make the comparison fair, we remove the expensive query in
the MariaDB baseline. A good result for K9db would show latencies comparable to MariaDB for all

endpoints, and a low overhead for encryption.

43

https://lobste.rs

30 - B MariaDB
g K9db
: 20 - B K9db (unencrypted)
2
0
= 10 -

0 -
\Oﬁ A’A% 0{\\ \$ “\6‘\ \Oﬁ ‘060 S\Q‘S
?&@ e \3 QCO 6\ ‘S i]“o\e?;\ Lot

\]o
Lobsters endpoint

Figure 3.10: K9db matches or beats MariaDB’s median (solid) and 95t percentile (shaded) latency on
the Lobsters workload, and encryption has low overheads except on the “Comments” endpoint, which
reads thousands of rows in the tail.

Figure 3.10 shows the results. Endpoints that mostly read (on the left) benefit from K9db’s materialized
views and are up to 2.1 x faster than in MariaDB, but endpoints with many writes (on the right) are
comparable in both systems. This makes sense, as K9db performs similar work to MariaDB, except
that some read queries are served from materialized views, and writes need to be encrypted and must
update any corresponding views. K9db without encryption is on-par with K9db in most endpoints. For
the “Comments” endpoint, K9db is 2.1 x slower than MariaDB and 1.5x slower than K9db without
encryption in the 95" percentile. This happens when the endpoint retrieves comments and votes on a
popular story from the database, which requires K9db to decrypt thousands of records. Developers could
manually add materialized views in K9db to speed up this endpoint, at the cost of additional memory.
Other endpoints read fewer rows or rely on (unencrypted) materialized views. This shows that K9db
achieves good performance for a practical web application, and that encryption has acceptable cost. All

further experiments show results for K9db with encryption enabled.

We chose the load in this experiment to saturate the hardware for the MariaDB baseline (=~ 760
pages/second, which results in 10k queries/second) and used the same load for K9db. K9db supports
a up to a 4.8x higher load without latency degradation, thanks to its caching for complex queries via

materialized views; we compare to a caching MariaDB+memcached baseline below.

44

T K9db

— 20 7 —
=)

g

2 10 1

<

—

%%‘? TTY

| |
30k 50k 6 100k
Number of users

Figure 3.11: K9db’s 95" %ile latency on the Lobsters workload remains stable as the number of users
(and thus, uDBs) increases. Each bar shows a distribution of endpoint latencies.

Subject Access Requests. We now measure the time required by K9db to satisfy SARs. We issue
an access and a deletion request for each of the top 1000 users with most data in the database, and run
these requests sequentially through K9db SARs API. Performance of SARs is secondary as they are rare
operations and can be executed asynchronously. A good result shows that K9db handles SARs correctly
(which it does by construction) and within reasonable time. In our experiment, K9db on average takes 1

ms to retrieve and 45 ms to delete the correct data for a user.

Scalability. We designed K9db to have performance independent of the number of uDBs. We confirm
this using the Lobsters benchmark with different numbers of users. Adding users increases the number of
uDBs and the amount of data in the database, but keeps the average amount of data per user constant. A

good result for K9db would show latencies remaining constant as the number of users grows.

Figure 3.11 shows the results as box-and-whisker plots over the nine endpoints (i.e., the bottom
and top whiskers are the fastest and slowest endpoints, respectively). K9db’s latency remains constant
as the number of users—and, consequently, uDBs—grows, because K9db satisfies queries either from
uDBs directly, via indexes, or from materialized views. These results confirm that K9db’s logical uDB

partitioning is practical for applications with large numbers of users.

Comparison to Caching Baseline. In the previous experiment, K9db had an unfair advantage over
MariaDB: it serves some data from materialized views, while MariaDB recomputes queries every time. We

now use one common query from Lobsters to compare three setups: (i) standalone MariaDB; (ii) MariaDB

45

1.0 - B MariaDB
MariaDB+Memcached
K9db

0.5 A

oo | NI

Figure 3.12: K9db matches MariaDB+memcached on a common Lobsters query (solid: median; shaded:
95" %-ile).

Latency [ms]

Reads Writes

with an in-memory cache (“MariaDB+Memcached”); and (iii) K9db. The MariaDB+Memcached setup is
a demand-filled cache [NFG+13]: writes invalidate the cached query result in memcached, and the next
read re-runs the query against the database when it misses in memcached. In K9db, writes update views
via its dataflow graph. We generate a skewed workload with a Zipfian distribution (s = 0.6) where 95% of
requests in the benchmark read the details of a random story and its vote count, and 5% of requests insert
new votes. A good result for K9db would show competitive read performance with memcached and low
overheads on write processing (since K9db does more work on writes); and MariaDB+Memcached and

K9db would show lower latencies than MariaDB alone.

Our results are in Figure 3.12. For reads, MariaDB+Memcached and K9db are on par in the median,
but K9db has a lower 95" percentile latency as K9db updates the cache via streaming dataflow, while
MariaDB+Memcached queries the database on a read miss. All systems perform similarly on writes, as
this query requires little dataflow update work in K9db and the caching baseline must make an extra RPC

to invalidate memcached.

Memory Overhead. K9db’s materialized views and ownership indexes add memory overhead compared
to a traditional database. We measure this cost and compare it to a caching setup with memcached. We
consider a setup that caches query results that developers would typically store in memcached, such as
the output of expensive joins and aggregates. These queries are identical to the ones that K9db caches
using materialized views. The experiment caches query results with the query parameters (? in prepared
statements) as the key, and the concatenated records as the value. K9db stores additional in-memory data

for internal dataflow state and ownership indexes. A good result for K9db would therefore show moderate

46

overheads compared to MariaDB+Memcached.

The Lobsters database is 61 MB on disk, and a typical memcached caching approach stores an
additional 97 MB of in-memory state. K9db’s memory footprint is 197 MB (3.3x DB size, and 2x
memcached’s footprint), which includes 6.5MB for the stories ownership index, and 56 MB for caching the
expensive query we removed from MariaDB (without this query, K9db’s overhead is 2.4 x DB size/1.5x
memcached). The overhead comes from K9db’s dataflow state, which allows K9db to incrementally

update materialized views.
ownCloud

ownCloud is a popular open-source application that allows users to upload files and share them with
other users [own21b]. Recall ownCloud’s schema (Figure 3.5): each file has a single owner—the original
uploader—but users can share files with other users and with groups. Files shared with a group are
accessible to all members of the group—i.e., a many-to-many relationship between users and files (a
pattern absent in Lobsters). We measure five common queries: (i) listing the files a user can access (“view
files”); (ii) sharing a file with another user (“share with user”); (iii) sharing a file with a group (“share with
group”); (iv) retrieving a file using its primary key (“Get*); and (v) updating the retrieved file (“Update®).
Our setup uses 100k users who each own three documents; each document is shared uniformly at random
with three users and two groups; and each group has five members. Our workload is 95% read and 5%
writes, equally split among the two types of sharing and file updates. Reads and writes target users drawn
from a Zipf distribution (s = 0.6). We batch ten reads and measure the per-request latency for the same
setups as in the previous experiment. A good result for K9db would show comparable read latency to

MariaDB+Memcached and low overheads on writes.

Figure 3.13 shows the results. “View files”, which returns all files shared with a user (directly
or via a group), involves five tables and three joins, which MariaDB executes on every read. Mari-
aDB+Memcached and K9db serve precomputed results from memory instead, which is fast. The 95
percentile for MariaDB+Memcached suffers because it queries MariaDB on a cache miss, which occurs
when a query retrieves files of user(s) invalidated by a previous write. K9db is fast and stable because it
updates the views via dataflow on writes. All systems perform similarly for the two share queries—a

good result for K9db, as it also updates views.

47

9 + B MariaDB

— 74 [MariaDB+Memcached
E . l M K9db
S L L
5} e ==
5 1.7 -
=
—~ 1.0 1

0.3

View 158y e Wl g8 e wl grov® Get - ypdate

Figure 3.13: K9db matches the baseline setups’ performance on the ownCloud workload (solid: median;
shaded 95" %-ile).

400
B Physical separation (1k users) Bl + Accessors

g 250 M + Logical uDBs B+ Views
£ 100 | I I I
>) H L
Lg) = ==
g 67
3 44

2 -

View ﬁ\eSSha e Wi uss‘gfaY o Wl group Get Update

Figure 3.14: K9db design decisions and optimizations are critical for good performance on the ownCloud
workload (solid: median; shaded 95" %-ile).

3.7.2 K9db Design Drill-Down

To evaluate the impact of design decisions central to K9db, we run ownCloud workload from the
previous experiment against versions of K9db that disable key components. We start with K9db set up to
naively store every uDB in its own database (without cross-uDB indexes); without support for accessor
edges in the DOG; and without materialized views (i.e., queries always run over data in RocksDB). This
guarantees strict separation of user’s data, a solution sometimes adopted for GDPR compliance [Rub17;
Rub18], although this lacks support for shared data (accessors) and anonymization. We then add
separation into logical uDBs (“+ Logical uDBs”), accessor support (“+ Accessors”), and materialized

views (“+ Views”). A good result would show that these features improve K9db’s performance.

48

Figure 3.14 shows the results. The naive uDB design is very slow because every query that K9db
cannot statically resolve to the affected uDBs requires scanning all uDBs; we only ran this setup with 1k
users (vs. 100k for the others). Making uDBs a logical abstraction much improves performance, justifying
our design choice. Accessor-typed DOG edges are important for expressivity: without them, ownCloud
would be restricted to a policy where users jointly own shared files. In addition, accessor support reduces
the number of copies stored and the fan-out of writes, which slightly reduces query latency. Finally,
materialized views improve latency of the “View files” query by 5x, as the results are cached in memory.
Since the view update is cheap, writes do not suffer much overhead. The runtime of “View files” without
no views is comparable to the runtime of the same query in MariaDB (Figure 3.13). This illustrates that

views are beneficial, but not essential to good performance in K9db.
3.7.3 Schema Annotation Effort

To understand the developer effort K9db’s schema annotations require, we now consider annotations

for three applications (Lobsters, ownCloud, and Shuup [Shul8]) in detail,

Lobsters. The Lobsters schema contains 19 tables. To use K9db, we had to annotate the schemas for
eight tables. Three tables (users, invitations, and invitation_requests) contain data subjects.
We annotated two FKs in each of hats, messages, and moderations with OWNED_BY to model joint
ownership. We annotated 8 other tables with a single OWNED_BY. For example, votes has multiple
foreign keys that lead to the users table (one direct, two indirect), and thus requires a single OWNED_BY
annotation to disambiguate and ensure votes are stored with the voter, rather than the author of the story
or comment voted on. Finally, we used one ACCESSES in taggings, and two anonymization rules in

messages, as shown in Figure 3.4.

ownCloud. ownCloud’s schema has 51 tables. We focused on the file sharing core, which consists of six
tables and has the most complex relationships. In addition to the annotations in Figure 3.5, we added
an OWNS annotation to the FK in the share table that points to the corresponding file in the file table

(omitted from Figure 3.5 for brevity).

ownCloud’s original schema “overloads” the share_with column to either hold a user or a group 1D,
and includes a share_type column to distinguish these cases. K9db could support such de-normalized

schema with more advanced conditional annotations; for our benchmarks, we modified the schema to

49

track users and groups in separate columns.

Shuup. Shuup [Shul8] is an open source e-commerce platform and supports customers with accounts,
guests who do not have accounts, and shop owners, all of whom have GDPR rights. Shuup lets users
request their account to be anonymized, but retains information for tax compliance, e.g., payment data,

customers’ countries of residence, and tax ID numbers, a form of data retention allowed by the GDPR.

Shuup provides GDPR compliance via a manually-implemented module with 4k lines of Python code
(2.7k lines of implementation and 1.3k lines of tests), developed in 137 commits over three years. At the
time of writing, Shuup’s anonymization behavior is inconsistent; it only anonymizes default shipping
and billing addresses, but retains previous addresses in cleartext in the mutable_address table [Kil21b].

Moreover, downloading data for a user is not supported [Kil21a].

We implemented Shuup’s anonymization policy in K9db using all annotations (Figure 3.3) over 17 of
Shuup’s 278 tables. We annotate personcontact with DATA_SUBJECT. This table stores natural persons,
and has FKs to their contact information (in contact) and their logins (in auth_user) if they have
accounts. Thus, personcontact contains users with and without accounts, i.e., guests. Using K9db,
Shuup correctly anonymizes data, lets users download the data and fixes the bug of not anonymizing

previous default addresses.

Shuup’s schema has several tables that might correspond to data subjects. K9db’s EXPLAIN COMPLIANCE
helps developers understand that they need to annotate personcontact. An incompliant (but plausible)
alternative would be to annotate auth_user, the login details table. This results in contact being
unconnected to the DOG, as there are no foreign keys to auth_user. The personcontact table has
such a foreign key, but it is nullable (e.g., for guests who lack accounts), and thus some of its rows will be

stored in uDBs and others in the orphaned region.

EXPLAIN COMPLIANCE helps developers identify and rectify these issues:

| Table "contact": GLOBAL
[Compliance Warning] Column "email" suggests personal data, but the table is not connected to
any owners.
3 Table "personcontact": in pDB for auth_user.id
4 [Compliance Warning] Table has owners, but nullable foreign key may prevent correct deletion of

data.

50

Application Tables Data Subject Owner Access Anon

Commento [Chal8] 12 3 8 1 3
ghChat [aer20] 6 1 7 2 4
HotCRP [Koh06] 26 2 15 10 7
Instagram

clone [Shal8] 19 ! 18 ! 0
Mouthful [Kuz18] 3 1 1 0 0
Schnack [sch17] 5 1 1 0 0
Socify [Mur21] 19 1 10 0 0

Figure 3.15: K9db requires few DATA_SUBJECT, ownership (OWNED_BY and OWNS), access
(ACCESSED_BY, ACCESSES), and ANON annotations to support real web applications.

A developer might also annotate contact with DATA_SUBJECT, but that table includes entries for
customers and companies. Annotating it makes companies into data subjects, which duplicates company-

related tables across uDBs. EXPLAIN COMPLIANCE also alerts developers to this.

Other Applications. Our schema annotations were sufficient to express reasonable compliance policies
for seven additional applications (Figure 3.15). We briefly highlight several interesting patterns in these

applications.

In ghChat [aer20], a chat application for GitHub, and the Instagram clone [Shal8], a group is owned
exclusively by its admin and accessed by its members. This is unlike ownCloud, which lacks group

admins and has members jointly own the group.

Mouthful [Kuz18] is a commenting service that embeds in a host application (e.g., a blog) to allow
users to comment on the host content (e.g., a blog post). Mouthful has no notion of users; instead, the
host application provides a string that represents the user identity alongside the comment they posted.
We added a DATA_SUBJECT table to store user identifiers, and created a FK constraint from the Comment

table’s author column to it.

Finally, the HotCRP [Koh06] review system associates data subjects to papers via a many-to-many
PaperConflict table. The table has a conflictType column that specifies the relationship, such as
“co-author” or “institutional conflict”. While this schema is normalized in the traditional SQL sense, it
is not normalized for ownership: rows with the co-author type signify ownership, while other conflict
types do not imply any ownership or access rights over the paper. We resolved this by adding a new
PaperAuthors table that only stores authorship associations, and refer to papers from it using OWNS. We

reserve PaperConflict to record other conflict types with an un-annotated reference to papers.

51

Migrating Applications to K9db. We identify some common challenges when migrating applications
to K9db. First, annotating an application schema requires knowledge of the application functionality and
its compliance policy, but also summarizes the policy in an easy-to-maintain way alongside the schema.
Many web applications also lack explicit FK constraints in their schema; developers must identify the

columns that act as implicit FKs and annotate them if needed.

Second, applications often have schemas that are not normalized in the traditional SQL sense (e.g.,
ownCloud’s share_with) or with regards to ownership (e.g., HotCRP’s PaperConflict). Developers
must normalize these schemas by introducing new columns or tables, and apply the corresponding
changes to the application code. K9db could support such schemas via new annotations that condition on
other columns, but this would complicate the annotation language and DOG model. Instead, K9db guides

developers to good, normalized schema designs.

Finally, applications with variable ownership (e.g., ownCloud, Shuup, HotCRP) often have endpoints
that temporarily orphan data. Developers must wrap such endpoints in compliance transactions in order to
use K9db. This modification is relatively unobtrusive, and K9db can be configured to automatically wrap
sessions in a CTX. This alleviates the need to manually introduce CTX to applications that open new
sessions for each endpoint or sequence of operations, but is not suitable for applications with long-lived

sessions.

3.8 Discussion

Relationship to Garbage Collection. There are high-level similarities between data deletion in K9db
and garbage collection in memory-managed programming languages. For example, one can view K9db’s
GDPR FORGET primitive as a kind of DOG-guided garbage collection. Consider a DOG with inverted
edges, such that the edges point away from data subject to their corresponding data. In this case, records in
data subject tables correspond to application-held active references, and (inverted) ownership and access
edges correspond to strong and weak pointers, respectively. In this analogy, GDPR FORGET operates
similarly to (i) deleting the top-level data subject row corresponding to the user that requests deletion (i.e.,
the application giving up on a reference) and (ii) deleting all data that is no longer reachable from any

data subjects (i.e., garbage collection).

Since K9db stores copies of jointly owned data in each of its owners’ uDBs, its deletion algorithm is

akin to reference counting. On the other hand, data deletion in DELF [CDN+20] is more akin to tracing.

52

There is a crucial difference between garbage collection and data ownership in K9db. Imagine that an
application consumes some reference in the middle of a transitive chain of pointers, causing its children to
no longer be reachable. Garbage collectors can reclaim all these orphaned children without affecting the
integrity of the application. However, K9db cannot similarly delete orphaned data created by some regular
application operation, such as when the last member of a jointly owned group leaves that group. This is
because such an operation may be a part of a larger transaction or may be the result of an unintentional or
buggy application behavior. In both cases, deleting the data in question results in unrecoverable data loss,
and violates the usual semantics of SQL database that developers are used to. This is why K9db rejects

such operations unless they are part of a compliance transaction that addresses all orphaned data.

Alternative Designs. We experimented with alternative designs for K9db during our work. This included
possible designs in which K9db acted as a shim on top of traditional SQL databases, such as MySQL
and SQLite. A strawman design where the underlying database executes regular application operations
without intervention from K9db cannot guarantee compliance, as regular application operations may

create orphaned data and violate various ownership-integrity requirements.

We experimented with an improved strawman design, where K9db analyzes and rewrites application
operations to ensure that they respect these integrity requirements prior to executing them via the
underlying database. This design can indeed guarantee compliance and resulted in a smaller and simpler
implementation. However, it exhibits high overheads, as it required building and maintaining complex
metadata to enable analysis of application operations, and transformed even simple application operations
into complex multi-table transactions. K9db’s design overcomes these overheads by building a new
storage layer organized by data ownership and the DOG, such that compliance invariants are simpler and

cheaper to enforce.

We also investigated extensions that apply some of K9db’s ideas, specifically its schema annotations
and DOG, to non-SQL databases and to applications with heterogeneous storage. We discuss these in

greater detail in §6.1.
3.9 Summary

KO9db is a new database system that achieves compliance with the requirements of privacy laws by

construction.

53

K9db models data ownership to capture the ownership patterns of real world applications, and handles
requests for access and deletion correctly. K9db matches or exceeds the performance of a widely-used
database and manual caching setup, and supports the privacy requirements of real-world applications.

K9db is open-source and available at https://github.com/brownsys/K9db.

54

https://github.com/brownsys/K9db

CHAPTER 4

Sesame: Practical End-to-End Privacy Compliance with Policy

Containers and Privacy Regions

This chapter introduces Sesame, a practical framework for end-to-end privacy policy enforcement.
Sesame supports a wide range of expressive application-provided policies. These policies may corre-
spond to requirements imposed by privacy laws, such as access control, purpose limitation, and user
consent. They may also encode self-set and internal policies that organizations wish to enforce over
their applications, such as policies governing data aggregation or security of authentication tokens and

cryptographic secrets.

Sesame wraps data in policy containers that associate data with policies that govern its use. Policy
containers force developers to use privacy regions when operating on the data, and Sesame combines
sandboxing and a novel static analysis to prevent privacy regions from leaking data. Sesame enforces a

policy check before externalizing data, and it supports custom I/O via reviewed, signed code.

We describe our experience porting four web applications to Sesame. Our results show that Sesame’s
automated guarantees cover 95% of application code, with the remaining 5% needing manual review.
Sesame achieves this with reasonable application developer effort and imposes 3-10% performance

overhead (10-55% with sandboxes).
4.1 Motivation

Modern web applications are subject to both self-imposed privacy policies and those required for
compliance with privacy laws (e.g., GDPR [GDPR16], HIPAA [HIPAA96], FERPA [FERPA74]). We

provide an overview of the requirements of general purpose data protection laws in §2.1. Inadvertent

55

breaches of these policies can lead to significant penalties [Cal; NOY20c; NOY20d; NOY20e]. For
example, Instagram was fined €405M for accidentally disclosing children’s email addresses and phone
numbers [Eur22]. Although Instagram had the correct internal policy and enforced it manually, developers

overlooked an edge case where children had business accounts with public details.

Challenges. These problems are difficult to avoid because developers today lack practical frameworks
to ensure that their code abides by their privacy policies. It’s easy for a developer to misremember which
policy applies to data, or to forget to apply appropriate checks throughout the application code. To reduce
this burden, developers need small and clear regions of privacy-critical code on which to focus their

attention, and automatic guarantees for the remaining code.

Existing systems that seek to provide policy compliance guarantees face the challenge of enforcing
complex and application-specific policies over an entire codebase (see §2.2.1). Classic approaches to
compile-time enforcement require developers to aid the analysis, e.g., by reasoning about security labels
or writing proofs [LKB+21; LTB+24]. Dynamic approaches, by contrast, often require custom runtimes

and either suffer from high overhead [YHA+16; YWZ+09] or limit application functionality [WKM19].

Sesame. Sesame is a new framework for writing web applications that guarantees that the majority
of application code upholds policies attached to data, and clearly highlights the remaining code that
developers must audit. Sesame targets end-to-end enforcement of flexible, data-dependent policies for
applications written in a widely-used mainstream programming language (Rust). This means that Sesame
can express rich policies that rely on dynamic information about the data or application. Unlike earlier
work, Sesame achieves this without a custom runtime, in the presence of third-party libraries, with limited
extra burden for developers, and at low overhead. Sesame embraces key taint-tracking techniques from
prior work on Information Flow Control (IFC) systems, but makes different tradeoffs to provide practical
abstractions for developers. Sesame’s key idea is to break the application into smaller, independent
privacy regions that operate on sensitive data and “glue code” that connects these regions. This breakdown
is possible because the Rust type system provides automated guarantees for the glue code, and it enables
Sesame to apply a new hybrid approach to reason about privacy regions. Sesame checks privacy regions
with a policy-independent static analysis, uses selective dynamic enforcement when static analysis fails,

and taps into existing software engineering processes like code review as a fallback.

56

Policy Containers. Sesame needs to prevent code outside privacy regions from accessing sensitive
data, and must track the association between data and policy. Sesame addresses this need with policy
containers. A policy container is a wrapper type that protects the wrapped data and associates a policy
object with it. Sesame relies on Rust’s encapsulation of private members to restrict access to the sensitive
data, and on Rust’s static type system to propagate the policy taint, even as the policy container moves

through data structures and glue code.

Privacy Regions. Of course, application business logic eventually needs to compute on the sensitive
data. To do so, the developer uses a Sesame privacy region, realized as a closure that has access to the raw
data. Sesame unwraps data in policy containers passed to the privacy region and re-wraps any returned
data. This allows Sesame to distill the problem of arbitrary policy enforcement into enforcing a fixed,
policy-independent leakage-freedom property over privacy regions. In particular, a privacy region must
not—directly or implicitly—leak sensitive data into captured or global variables, via system calls, or

through native or unsafe code. Sesame applies static analysis to privacy regions to detect such leakage.

Because no existing static analysis for Rust covers this leakage-freedom property, Sesame contributes
SCRUTINIZER, a new static analyzer that soundly rejects leaking privacy regions. Rust’s mutability,
ownership, and lifetime information enable SCRUTINIZER’s analysis, which is difficult to do precisely
in other languages. Verified leakage-free regions that pass SCRUTINIZER run as-is and without runtime

overhead.

SCRUTINIZER’s static analysis is sound but incomplete, so it may reject non-leaking privacy regions
that call into complex-to-analyze code or libraries with native code. Sesame executes such regions in a

sandbox that prevents leaks.

Naturally, applications eventually do intentionally externalize data, e.g., via database queries, HTTP
RPCs, or emails. Sesame accommodates this via trusted Sesame-enabled libraries, which invoke policy
checks before releasing data from policy containers. For custom I/O via arbitrary unsupported libraries,
Sesame provides critical regions. A code reviewer must manually review and sign each critical region.
Sesame’s design makes critical regions infrequent (<5% of code), slim (=16 LoC), and clear to the

reviewer; and Sesame enforces new reviews when the underlying code changes.

Thread Model. Sesame targets honest developers who make unintentional mistakes and assumes that

57

sanctions deter developers from malicious behavior. Thus, timing and side-channel attacks are out of
scope. The Rust compiler, SCRUTINIZERs static analysis, the sandbox, and Sesame-provided libraries
are trusted, and Sesame’s guarantees for critical regions rely on good-faith and attentive code review.
Developers should use Sesame-provided libraries to interact with external entities, such as an HTTP
client or a database, to avoid frequent critical regions. Such mandatory use of specific libraries is already

common practice in organizations today.

Results. We evaluated our Sesame prototype [DAA+24b] with four Rust web applications. Our
experience suggests that Sesame can express a wide variety of policies and requires limited developer
effort, and that effort is focused on critical regions that need careful attention. In our case studies,
Sesame’s automated guarantees cover 95% of application code, including the vast majority of privacy
regions. Sesame’s policy checks add 3—10% runtime overhead in the common case, while sandboxed

regions have higher overhead (10-55%).

Contributions. In summary, we highlight four contributions:

1. Sesame, a practical framework that enforces policy compliance over data by construction, by

breaking the application into glue code and privacy regions.

2. A new approach that composes Rust’s guarantees with hybrid static/dynamic enforcement of a

single, policy-independent leakage-freedom property.
3. A novel static analysis that checks Sesame’s leakage-freedom property over privacy regions.

4. Dynamic enforcement of Sesame’s guarantees using sandboxing where static analysis fails, and a

design that focuses developer attention on critical regions that require human review.
4.2 Sesame Overview

Sesame is a framework for web application development. To illustrate how developers use Sesame,
consider how a developer might write an HTTP endpoint for students to submit their answers in a
homework submission application (Figure 4.1a, without Sesame). The code authenticates the user (line
2), retrieves their email address from the database (line 4), inserts the student’s homework answer into the

database (lines 6-7), and sends the student a confirmation email via a third-party library (lines 10 and 18).

This endpoint handles two types of user data: the student’s email address and their submitted answer.

58

fn submit_homework(request: Request) {
let uid = authenticate(request);
// Get the user’s email // email: PCon<String, ...>
let email = DB.lookup(uid); let email = SesameDB.lookup(uid);

1 1 fn submit_homework(request: SesameRequest) {

2 2
3 3
4 4
5 // Get the answer from the request 5 // answer: PCon<String, AnswerAccessPolicy (§4.3.1)>
6 6
7 7
8 8

let uid = authenticate(request);

let answer = request.answer; let answer = request.answer;
DB.insert (answer) ; SesameDB.insert (answer);
// body: PCon<String, AnswerAccessPolicy>

9 // Format email body 9 let body = sesame::privacy_region(answer, // §4.5.1
10 let body = format!("submitted {}", 10 |raw_answer: String| format!("submitted {}", raw_answer)
11 answer) ; 11);
12 12 // Sesame checks that email meets AnswerAccessPolicy.
13 13 let context = Context { email }; // §4.3.2
14 14 sesame: :critical_region(body, context, // 8§4.5.3
15 15 #[signed(Kinan Dak Albab <babman@brown.edu>, 7459f3da..)]
16 16 |raw_body: String, context: Context::Out| {
17 // Email access control implicit 17 // Reviewer checks context.email used as recipient
18 email::send(email, body); 18 email::send(context.email, raw_body);
19 19 b
20 3 20 3

(a) Without Sesame. (b) With Sesame, privacy regions highlighted.

Figure 4.1: An HTTP endpoint for submitting homework answers, implemented (a) without Sesame and
(b) with Sesame. Using Sesame, the developer must use privacy regions to operate on data in PCONs.
Sesame verifies the first region via static analysis (green), but the region that sends an email requires a
critical region (yellow), which a code reviewer must sign.

Each type might be governed by a different policy. For example, a policy for the answer might allow only

the student themselves, TAs, and the instructor to view the submission.

We now look at how the developer uses Sesame to implement this endpoint with compliance guarantees
(Figure 4.1b). The developer invokes Sesame-enabled libraries, as mandated by their organization, to
look up the email address in the database (line 4) and to access the answer in the HTTP request (lines
1, 6). As these libraries are Sesame-enabled, they return data wrapped in a Policy Container (PCON;
see §4.4). They also accept PCONSs as input, e.g., to insert the PCON-wrapped answer directly into the
database (line 7). A PCON keeps the underlying data private and inaccessible to the application and
associates it with a policy: e.g., the answer is protected by an AnswerAccessPolicy. §4.3.1 explains

how developers write policies and associate them with data.

Now, the developer needs to construct the email body. This is application-specific functionality
unavailable in a Sesame-enabled library, and it operates on the answer data. However, accessing the
answer directly causes a compiler error, as the answer is a private member in a PCON. Instead, the
developer must use a privacy region. They invoke Sesame’s privacy_region API, passing the PCON

along with a closure to execute on the raw answer (lines 9-11). Sesame’s static analysis (§4.5.1) verifies

59

that the closure is leakage-free, so it runs as-is on the raw data. Sesame wraps the output of the closure in

a PCoN with an identical policy to the input.

Finally, the developer emails the body they constructed to the student using a third-party email library.
The contents of body are inside a PCON, so the developer could again invoke privacy_region with a
closure that sends the email. However, this closure intentionally leaks data via email, so it is clearly not
leakage-free. The developer informs Sesame of this by instead using a critical region (CR) (lines 14-19).
Before executing a critical region, Sesame checks the associated policy relative to a developer-provided
context. In our example, this context contains the recipient’s email address, and Sesame checks that
AnswerAccessPolicy allows sending the answer to that email address. A code reviewer, e.g., a team
lead or a policy engineer, must now manually review the critical region and ensure that it sends the email
to the address in context that passed Sesame’s policy check. §4.3.2 describes Sesame’s policy check

and the review workflow.

In general, reviewers must verify that the CR uses the context and acts in ways that are consistent with
it, and then sign the region. During a release build, Sesame validates the signature (§4.5.3). If the CR’s
code or any of its dependencies change, validation fails. If the developer failed to see the need for a CR
on line 14 and used privacy_region instead, Sesame’s static analysis would reject this privacy region.
The developer then would have to decide whether they believe the rejected region to be leakage-free. If

so0, they can run it in a sandbox (§4.5.2); if not, they use a CR as shown.

Developers may implement policies concurrently with the application, or use placeholder policies

first and then add the policy logic later; §4.7 discusses porting existing applications.
4.3 Design

Sesame’s policy enforcement is concerned with the application’s sources and sinks, which correspond
to where data enters and leaves the application. When the application reads from a source, Sesame
attaches a policy to the data. Sesame’s design then ensures that policy remains attached to the data,
including derived data, as it flows through the application (i.e., taint-tracking). Sesame only allows data

to leave the application at a sink if its associated policy check succeeds.

Sources. Sesame provides built-in support for common sources such as HTTP requests and SQL

databases. Sesame reads data from those sources, places it in a policy container (PCON), attaches the

60

1 #[sesame::get("/view/<answer_id>", auth="student")]
2 pub fn view_answer(

3 student: Student, // authenticates via cookie

4 answer_id: PCon<u8, NoPolicy>,

5 context: Context) -> sesame::HTMLTemplate {

6 // rows : Vec<sesame: :PConRow>

7 let rows = SesameDB.query(

8 "SELECT * FROM answers WHERE id = ?

9 AND author = ?", (answer_id, student.email),
10 context);

11 // answer: PCon<String, AnswerAccessPolicy>

12 let answer = rows[0]["answer"];

13 // Render the answer. Sesame automatically checks
14 // associate AnswerAccessPolicy here.

15 sesame: :render("answer.html", answer, context)

16 }

Figure 4.2: An endpoint for students to view their answer uses answer_id from the HTTP request to
look up the answer in the DB. Sesame only reveals the PCON-wrapped answer if the policy allows the
signed-in student to view it.

appropriate policies to it, and returns it to the application. For example, Figure 4.2 shows an endpoint
for students to view their homework answers. answer_id comes from a Sesame HTTP source (line 4),
and rows comes from a Sesame database source (lines 7-10), so the application receives data in PCONs.

Attempts to read raw data from these sources will cause a compile-time type error.

Sources not in Sesame-enabled libraries provide raw data, which developers must manually place
in policy containers and associate with policies. Organizational rules are responsible for ensuring that
developers do this correctly: e.g., requiring developers to use a custom I/O module that associates policies

to the data, rather than reading files directly.

Sinks. Similarly, Sesame has built-in support for common sinks, such as rendering HTML templates
(line 15), or passing data to the DB for reads (line 9) or writes. Sesame receives policy containers from the
application, checks the associated policies, and sends the data to the sink if the policy permits. Releasing
data to custom sinks unsupported by Sesame requires critical regions and code review. For these sinks,
developers explicitly provide Sesame a context that describes the intended use. Sesame checks that the
policy associated with data accepts the context before running the critical region that touches the custom

sink. Code reviewers must review and sign CRs to ensure that they match the context.

61

1 #[db_policy(table = "answers", columns = ["answer"])]
2 struct AnswerAccessPolicy {author: String, lecture: u64}
3 impl Policy for AnswerAccessPolicy {

4 fn check(&self, context: Context::0ut) -> bool {
5 let email: String = context.email;

6 email == self.author || is_instructor(email)

7 || is_discussion_leader(email, self.lecture)
8 1}

9 fn join(self, other: Self) -> Self { ... }

10 }

11 impl DBPolicy for AnswerAccessPolicy {
12 fn from_row(row: &MySQLRow) {

13 AnswerAccessPolicy {

14 author: row.get("author"),

15 lecture: row.get("lecture_id"),
16 }

17 }

18 %

Figure 4.3: The CHECK function (lines 4-8) of AnswerAccessPolicy only allows sending an answer to
an email, from context.email (line 5), if it matches the answer’s author, the instructor, or a discussion
leader. Line 1 binds the policy to the answer column; lines 1216 instantiate it.

1 let context = Context { email: "someone@else.com" } ; 1 let context = Context { email: answer.author } ;

2 sesame::critical_region(body, context, 2 sesame::critical_region(body, context,

3 // Sesame invokes policy check with context prior 3 // Policy check would pass on this recipient, but the
4 // to calling the closure. Policy check fails. 4 // region uses an email address not from the context.
5 #[signed(..., 7459f3da..)] 5 // Reviewer refuses to sign region.

6 |raw_body: String, context: Context::Out| { 6 |raw_body: String, context: Context::Out| {

7 email::send(context.email , raw_body); 7 email::send("someone@else.com" , raw_body);

8 1 8 1)

(a) A signed critical region correctly uses its con- (b) Sesame’s policy check passes on an authorized
text, but the email in the context is unauthorized and email, but the critical region mismatches its context,
Sesame’s policy check fails. so the reviewer rejects it.

Figure 4.4: Buggy alternative implementations for Figure 4.1. Sesame rejects both via policy checks (a)
or code review (b).

4.3.1 Policies

Developers express each policy type as a Rust struct and implement Sesame’s POLICY trait for
this struct. This trait requires providing a CHECK function that Sesame invokes before revealing data
associated with that policy at a sink. The CHECK function may use the context as well as metadata stored
inside the policy itself, and can execute arbitrary code (e.g., query a database). If the policy check fails,

Sesame reports an error; otherwise, it releases the data to the sink.

Figure 4.3 shows a policy for student homework answers. The policy allows revealing an answer

only to its author, the instructor, or students who are discussion leaders for the lecture (identified via a

62

database query).

Associating Policies with Data. Application developers must associate policies with the data read
from application sources. Developers must explicitly associate insensitive data that is intentionally not
covered by any policy with NOPOLICY (e.g., Figure 4.2, line 4). For sources with a structured schema,
application developers specify the policy associations decoratively for that schema: e.g., Figure 4.3
associates AnswerAccessPolicy with the answer column in table answers (line 1). Applications
declare the associated policies when they read data from unstructured sources, such as a cookie or GET
parameter. Developers must implement constructors to create instances of a policy for each type of source

to which they attach the policy. Since Sesame trusts policy code, it passes raw data to policy constructors.

Policy Conjunction. Sesame combines policies when combining PCONSs, e.g., when executing a privacy
region over a vector of PCONs. If the policies have different types, Sesame generically combines them by
stacking them. The stacked policy stores all source policies, and checks all of them in its CHECK function.
If all the policies have the same type, Sesame combines them using a policy-specific JOIN, if policy
developers implement one (Figure 4.3, line 9). Joining and stacking must be semantically equivalent, but

joining may result in more compact policies that are faster to check.
4.3.2 Context and Policy Checks

Sesame invokes policy checks when: (i) a policy container reaches a Sesame-enabled sink; and (ii)

before running a critical region on the data in a PCON.

Policy checks always happen relative to a context. Contexts contain summary information about the
associated source or sink. They are immutable objects, either provided by Sesame or created by the
developers themselves. The content and API of a context is application-specific: e.g., the homework
submission example identifies users by emails, but other application contexts might contain user IDs or
OAuth tokens. Contexts can store sensitive information in PCONs, which Sesame replaces with raw data

when invoking CHECK and critical regions (i.e., CONTEXT::OUT; see §4.4 SESAMETYPE).

Contexts created by Sesame are trusted, e.g., they correctly identify the authenticated user. Developers
may pass them to built-in Sesame sinks, which use them for policy checks without any developer
intervention (Figure 4.2, line 15). By contrast, Sesame only allows custom contexts with custom sinks,

and relies on manual review to ensure the sink’s behavior is consistent with the context.

63

Example. Figure 4.1b contains a critical region to send emails (a custom sink). The application
creates a custom, untrusted context that indicates the intended recipient of the email (line 13). The
application then invokes a critical region on body with that context (line 14). Since body is associated
with AnswerAccessPolicy (line 8), Sesame first invokes that policy’s CHECK function (Figure 4.3, lines
4-8) with the provided context, and executes the region only if that check succeeds. CHECK ensures that
the email provided in the context belongs to the author, the instructor, or a discussion leader. A reviewer

must ensure that the critical region indeed sends an email to the intended address (Figure 4.1b, line 18).

A buggy implementation might violate this policy in two ways. The application could provide Sesame
with a context that contains an unauthorized email (Figure 4.4a). This causes the policy check to fail, so
Sesame never executes the critical region. Or the application may provide a context with an authorized
email when the code in the critical region sends an email to a different address (Figure 4.4b). This is
an example of a custom context that misrepresents the sink. Here, the policy check would succeed, but
a careful reviewer refuses to sign the critical region, because it does not email context.email, and

Sesame errors on a release build.

Importantly, the reviewer merely verifies that the critical region uses context.email, which passed

a policy check, and therefore Sesame guarantees it is authorized.
4.3.3 Guarantees and Threat Model

Sesame views policy definitions as ground truths that specify desired application behavior. This
includes each policy’s CHECK and JOIN functions, constructors, and associations with data at sources.
Sesame also relies on the soundness of the Rust type system, its compiler, and the correct implementation
of Sesame components, all of which are trusted. Subject to the assumptions below, Sesame guarantees
that data can only be revealed at a sink whose context passes the policy check associated with the data’s

origin.

Proper Usage. Organizations must mandate the proper use of Sesame, e.g., via code review, linters, or
other best practices. Specifically, developers must (i) use Sesame’s built-in sources when applicable, (ii)
correctly wrap data from custom sources in policy containers, and (7ii) compile their applications with

Sesame’s toolchain.

Accurate Review. Sesame assumes that reviewers carefully vet critical regions and only sign them after

64

ensuring that the regions are consistent with their specified contexts.

Unsafe Rust. Rust guarantees encapsulation for applications that operate solely within safe Rust.
However, applications often, directly or in dependencies, invoke unsafe code for which Rust provides no
encapsulation guarantees. Sesame implements additional protections to ensure data in PCONs remains
inaccessible even to unsafe Rust code (§4.4), assuming that such code is buggy but not outright malicious.
For example, Sesame protects against a logging library that uses unsafe code to byte-wise dump provided
objects, but not unsafe code that dumps the entire memory of the application process (in line with other

IFC systems [LKB+21; MLO00; YWZ+09]).

Implicit Leakage. Sesame protects against direct leakage and implicit data-dependent control flow.
Application code cannot perform control flow on data wrapped in policy containers without using privacy
regions, which have mechanisms for mitigating data-dependent control flow (§4.5). This also ensures that
observable data-dependent interactions (e.g., with a database) only occur following a successful policy
check. The one exception is certain FOLD APIs that Sesame provides for ergonomic reasons, which can
leak information about the shape of some data types. Developers can disable them for data with restrictive

policies (§4.4). Timing and micro-architectural side channels are out of scope.
4.4 Policy Containers

Sesame’s policy containers are a generic data type, PCON<T, P>, that wraps two private members:
data of type T, and a policy object of type P. The data wrapped by a PCON is private and can only be
accessed or manipulated by Sesame and never by application code, except through a privacy region. This
guarantees application code cannot leak such data without going through Sesame’s checks. Using policy
containers also guarantees that a policy associated with data at a source remains associated with that data,

including derived data, throughout the application.

PCoONs are regular Rust data types. Application code can pass or return PCONs to and from functions.
It can store PCONs inside vectors and other collections, and it can define structs that have PCON
fields. While PCONs simplify policy tracking and checking, they prevent application code from directly
computing over the wrapped data. Therefore, a core challenge in Sesame is to provide application
developers with tools and abstractions to allow them to operate on data inside PCONs. PCONs provide

builtin functions for common operations, such as type conversions (e.g., from a PCON<U32, P> toa

65

API Level Supports Guarantees Root of Trust App. Developer Effort

Built-in Common primitives Static (taint tracking) Rust + Use PCON<T, P> instead
Runtime (policy checks) Sesame of T with compiler guidance

Verified Statically-verified Static analysis (sound Rust + Check that Sesame accepts
Region (VR) leakage-free closures but incomplete) Sesame closure as leakage-free

Sandbox Leakage-free closures that Runtime (sandbox) + RLBox Engineering setup
Region (SR) cannot be verified statically ’ [NDG+20]

Critical Arbitrary closures Code signing + reviewers Authorized developers
Region (CR) including sinks review and sign closure

Figure 4.5: Sesame’s API levels. Built-in libraries and verified regions require a minimal root of trust.
Sandboxed regions support more complex code at the cost of runtime overhead. Critical regions support
arbitrary code, but rely on code review.

PCON<STRING, P>). Developers must use privacy regions to perform more complex tasks on data in

PCoONs.

PCON Layout. Rust guarantees that safe Rust code cannot access the private members of a PCON.
However, unsafe Rust code can circumvent these protections by using casts or accessing the bytes of the
policy container directly. Library code sometimes does this for legitimate reasons, e.g., a data structure
that uses memcpy for efficient resizing, or a logging library that dumps the bytes of arbitrary objects. To
ensure that such libraries cannot accidentally leak the data wrapped by PCONs, Sesame stores the data
on the heap and references it within the PCON using an obfuscated pointer. Sesame XORs this pointer
with a random global secret. This prevents unsafe application or library code from accidentally leaking
the data, but cannot protect against actively malicious code that intentionally undoes the obfuscation or
scans memory contents, both of which are out of scope. Finally, this layout has performance implications:
operations on the PCON require an additional XOR and pointer dereference, and vectors and collections
of PCONSs have worse cache locality than their plain counterparts. These overheads affect wrapping and
unwrapping data at privacy region entry and exit, but not the body of a privacy region, which accesses the
data directly. This indirection adds a 1.7-2.1x overhead in microbenchmarks, but is negligible for real

workloads (§4.8).

SESAMETYPE. Sesame handles types with arbitrary nested PCONs, such as Vec<PCON<T, P>>
or a custom struct with nested PCON fields, by relying on the SESAMETYPE trait. For each type X
that implements it, this trait defines the corresponding out-type X::Out. X::Out mirrors the structure
of X but replaces every nested PCON<T, P> with the corresponding T. The trait also defines private

conversion functions between the two types, which only Sesame can invoke. Sesame implements this trait

66

for various monads, tuples, and collections that may contain PCONs, e.g., Vec< X > and Option< X >
with out-types Vec< X ::Out> and Option< X ::Out>. Because this trait deals with raw data, Sesame
disallows applications from manually implementing it for their custom types (enforced via custom lints,
§4.6). Instead, Sesame provides a macro that applications can use to derive trusted implementations of

this trait and its out-type for their custom types.

Fold. For better ergonomics, Sesame provides a FOLD API, which allows applications to move PCONs
in and out of data structures. Suppose the application has d: PCON<X, P> where X is some application
struct containing {a: T'1, b: T'2}. Applications can use FOLD(x).d to retrieve the field a: PCON<T]I,
P> (“folding in”). Alternatively, applications can FOLD PCONs “out”, e.g., to transform Vec<PCON<T,
P>> to a PCON<Vec<T>, P> whose policy is the conjunction of all the input policies. Folding out is
always safe, but folding in may leak information about the shape of the underlying data, e.g., the length
of a vector or whether an Option is NONE or SOME. If undesirable, policy developers can annotate a

policy with NOFOLDIN to prohibit folding in on its associated data.
4.5 Privacy Regions

Sesame provides different ways for applications to operate on data wrapped by PCONs. Figure 4.5
summarizes them: ‘“built-in” describes Sesame-enabled libraries, while the other three API levels
correspond to privacy regions. Privacy regions allow application code to execute on the raw data.
Sesame’s static analysis helps the developer determine what type of privacy region to use. At a high level,
the analysis checks that a closure cannot leak input or derived data, e.g., by writing to a file or modifying

a global or captured variable.
Depending on the static analysis outcome, different types of privacy regions are appropriate:

1. If the static analysis passes, the privacy region is a verified region (VR) and runs as-is (§4.5.1).

2. If the static analysis fails, but the developer expects the region to be leakage-free, they can choose
to use a sandboxed region (SR), which runs the code in a constrained environment that prevents
leakage (§4.5.2).

3. If the developer expects a failing region to have intentional side effects (e.g., because it interacts

with a custom sink), they use a critical region (CR), which requires manual code review (§4.5.3).

In general, the privacy_region APIs accept a SESAMETYPE X and a closure F': X::Out — Y as

67

arguments. Sesame executes the closure over the input after replacing PCONs with their underlying data.
Sesame wraps the result of the closure in a PCON, and associates it with the conjunction of all the policies
in the input. Critical regions are the exception; they can return data with a different policy or no policy at

all.
4.5.1 Static Analysis and Verified Regions

Sesame’s static analyzer, SCRUTINIZER, checks whether a closure passed to a privacy region could
leak some of its arguments outside the region. SCRUTINIZER is sound but incomplete: it never accepts

leaky privacy regions, but may conservatively reject leakage-free ones.

SCRUTINIZER searches the application code for instances of Sesame’s privacy_region call. We
refer to the closure passed to the privacy region as the top-level function. SCRUTINIZER considers each
argument to the top-level function to be sensitive. Top-level functions may also capture external variables
from their environment, but captured variables are not sensitive. SCRUTINIZER accepts a function only
if it concludes that the function cannot leak any of its arguments or any data derived from them. This
includes leakage via external side effects (e.g., printing to stdout, changing the file system) or via mutating
captured variables that other parts of the application can observe (e.g., global variables). SCRUTINIZER

checks the top-level function and its callees, direct or indirect, including those in external libraries.

Information Flow. SCRUTINIZER computes a sound over-approximation of the information flow of the
arguments and captured variables in the top-level function all the way through call chains to helper and
library functions. SCRUTINIZER uses Flowistry [CPA+22] to find flows from a sensitive variable to any
aliases within a single function body. We extend SCRUTINIZER with additional analysis to track sensitive
variables as they are passed to and returned from other functions. SCRUTINIZER uses dataflow analysis
to soundly resolve dynamic dispatch with good accuracy. Thus, SCRUTINIZER identifies all aliases or
variables derived from sensitive variables, either directly or implicitly via control flow. SCRUTINIZER

considers all such variables to be sensitive as well.

Analysis. SCRUTINIZER checks that the information flow of sensitive variables is contained entirely
within the analyzed code. Within Sesame’s threat model, information can flow outside a function in three

ways:

1. via mutably captured variables or variables derived from such captures;

68

2. via any unsafe mutation primitives applied to captured variables and variables derived from captures,
regardless of their mutability;
3. via functions with unknown bodies that SCRUTINIZER cannot conservatively approximate, such as

native code or unresolved generics, unresolved dynamic dispatch, and unresolved function pointers.

SCRUTINIZER catches all three cases. Mitigating the first case ensures that the function cannot mutate
external variables in ways that depend on (and thus leak) sensitive arguments. Mitigating the second case
covers all forms of interior mutability in Rust, which ultimately rely on unsafe mutation (via transmute or
raw pointer dereferences). Mitigating the third case ensures that SCRUTINIZER rejects functions that leak

sensitive data via external side effects, such as writing to files or sockets, as they must invoke native code.

Allow list. SCRUTINIZER allow-lists some trusted functions, including certain Rust intrinsics and
low-level functions for string formatting and panics. We manually confirmed that these functions are

leakage-free.

SCRUTINIZER also allow-lists functions in standard library collections (e.g., Vec: : push) that take
the Self parameter as a mutable reference. This is sound, as invoking such a function on a captured
collection would require a mutable reference to it, which can only be acquired by mutably capturing it
(violating case 1) or via an unsafe conversion from an immutable capture to a mutable one (violating
case 2). Since SCRUTINIZER rejects such code, these functions can only be called on local variables,
which external code cannot observe. The only remaining risk is the allow-listed functions directly leaking
arguments (e.g., by writing to a file), which standard library collections do not. This assumption makes

std: :collections part of Sesame’s TCB, an acceptable risk in practice.

Details. SCRUTINIZER first collects Rust’s MIR representation of all available function bodies via
rustc dataflow analysis framework, including all possible variants for dynamic dispatch. Second,
SCRUTINIZER ensures all captures are immutable and then uses Flowistry to track information flow
through the collected call tree. If it encounters any violations of cases 1-3, SCRUTINIZER rejects the

privacy region. Appendix B describes the analysis in more detail.

Discussion. SCRUTINIZER is sound but incomplete for three reasons. First, SCRUTINIZER conservatively
rejects functions if it fails to resolve their information flow in its entirety. For example, a leakage-free

function will be rejected if it contains dynamic dispatch that SCRUTINIZER cannot resolve. Second,

69

SCRUTINIZER checks for stronger (but easier to detect) variants of the three cases above. For example,
SCRUTINIZER rejects all functions that capture via mutable reference, even if they never mutate them

based on sensitive values. Third, Flowistry itself over-approximates information flow [CPA+22].

SCRUTINIZER uses Flowistry to propagate sensitivity labels within a function body, but it contributes
new dataflow and type analyses that (i) propagate labels across functions, (ii) handle unsafe code, generics,

and dynamic dispatch, and (iii) detect mutation, including in implicit, data-dependent ways.
4.5.2 Sandboxes

Developers may choose to run a region that SCRUTINIZER rejects as a sandboxed region, which relies

on runtime protections to enforce that the region never leaks sensitive data.

Sesame’s sandboxed regions use RLBox [NDG+20], a lightweight sandbox used in Firefox to execute
untrusted native libraries. RLBox relies on software-based fault isolation (SFI), which uses inline dynamic
checks to restrict memory reads and writes to a memory region allocated at sandbox creation time. This
isolates the sandboxed region’s memory from the rest of the application. In addition, RLBox forbids

system calls, so sandboxed regions cannot externalize data via 1/O.

Extending RLBox. RLBox is designed to isolate untrusted libraries from a trusted host application
(Firefox). Hence, RLBox allows the application to access the sandbox’s outputs and lets the sandbox print
to stdout and stderr for debugging. In Sesame, the application is untrusted and the sandbox must not leak
any sensitive information to it. We thus align RLBox with Sesame’s requirements by: (i) modifying the
RLBox runtime to forbid printing, and (ii) building infrastructure around sandbox invocations to compute
the conjunction of all policies associated with the sandbox inputs and wrapping the sandbox output in a

PCoN with the conjoined policy.

Optimizations. RLBox allocates the entire sandbox memory on sandbox creation, which makes
creating and destroying sandboxes expensive. Firefox overcomes this by reusing the same sandbox for
invocations in the same trust domain (i.e., the same library and HTTP origin). Sesame sandboxes process
data with different policies, making such reuse unsafe: earlier invocations with stronger policies could
affect sandbox state that influences later invocations with weaker policies. Instead, Sesame uses a pool
of pre-allocated sandboxes, and wipes the sandbox memory after each use to ensure isolation across

invocations. This involves zeroing out the sandbox stack and heap, and restoring global data and metadata

70

to their initial state from a checkpoint.

Because of sandbox memory isolation, Sesame must copy all input data into the sandbox memory,
and vice-versa for its outputs. However, the same datatype may have an incompatible size and memory
layout across the application and sandbox, as RLBox runs sandboxes in 32-bit WASM and offsets its
address space for isolation. For example, a vector type in the application may store three 64-bit fields:
the pointer to the underlying buffer, a length, and a capacity, while the vector type in the sandbox stores
all three in 32-bit variables with an offset pointer. Sesame provides a SANDBOXCOPY trait for quickly
deep-copying Rust objects to/from sandbox memory, while altering their memory layout and offsetting
any pointers (i.e., “pointer swizzling”). Sesame implements this trait for primitives, strings, and vectors,
and provides developers with macros to derive the trait for their custom types. For types that do not

implement this trait, Sesame falls back on serializing and deserializing data.
4.5.3 Critical Regions

Developers must use a critical region (CR) to send data to custom sinks. They may also use a CR to
execute a leakage-free region that SCRUTINIZER conservatively rejected, and in rare cases where that
region is incompatible with sandboxing or the runtime overheads of sandboxing prove undesirable. Code

reviewers manually review CRs for unintentional leakage and for correct use of the region’s context.

Review Process. CRs should be concise, single-purpose, and self-contained. Reviewers should reject
CRs that are unfocused or overly complex and request that authors simplify them, similar to regular code

review.

Sesame executes a CR only after a successful policy check on the input data, given the provided
context (§4.3.2). Reviewers thus do not need to reason about the semantics of the associated policies (e.g.,
which emails are allowed). Instead, they reason about the code of the CR and the semantics of the context
object it receives (e.g., does the CR send an email to the address specified in the context). They also need

to ensure the CR has no unintentional leaks, e.g., via logging.

Reviewing a CR includes reasoning about library code it calls into. Large companies have existing
procedures for approving and updating dependencies; for example, Google curates approved dependencies
and versions that developers are allowed to use [Goo23]. A reviewer of a CR that invokes an approved

dependency need only check that the usage of the dependency is consistent with its documented API, and

71

relies on the curation process to ensure the sanity of the docs. Open source projects or smaller companies
may not have the capability to perform such detailed vetting. In such cases, reviewers must look up each
dependency they encounter in a CR, and decide how strictly they review it based on reputation, bug

reports, or other criteria.

Sesame requires reviewing and re-signing a CR when its code or dependencies change. Since Rust
locks the dependency versions in an application’s Cargo.lock file, dependency updates are explicit,

intentional, and generally rare.

Signatures. Reviewers indicate to Sesame that they approve a CR by signing it. Signatures serve two
purposes: (i) they verify to Sesame that the CR has indeed been approved by an authorized reviewer, and
(ii) that the CR and its dependencies are unchanged since the review. During review, Sesame produces a
hash of the CR. Reviewers sign that hash and attach their signature to the CR. During each subsequent
release build, Sesame reproduces a hash for that CR using the same procedure, and checks that the
signature attached to the CR is a valid signature for that hash. The hash differs if the CR changed since
review, including changes to helper and library functions. This in turn invalidates the signature, which

prompts Sesame to reject the CR and require a reviewer to re-vet and re-sign it.

Hashing. Sesame builds a call graph for the CR similar to §4.5.1, but stops at calls to external depen-
dencies. Sesame concatenates the source code of all functions in the call graph into a normalized string
(e.g., without comments and extraneous white spaces). Sesame then records the external dependencies
the region calls into and traverses the Cargo.lock file to find the exact versions of these dependencies
and any transitive dependencies. Sesame augments the CR string with the dependency information, and
hashes it. Changes to the application portion of the CR, or to direct or transitive dependencies, result in a
different hash. Updates to dependencies or application code unrelated to the CR do not affect the hash

and avoid superfluous review.

Ergonomics. Sesame omits signature checks in debug mode, which allows developers to implement and
test their CRs without review. Then, authors request signatures from reviewers, who must review these
regions, e.g., as part of a pull request. This mirrors existing industry practices that require approval by

authorized reviewers for merging code.

Our prototype uses GitHub as a key provider and for identity management. Sesame pulls public keys

72

for reviewers from GitHub to validate the signature of each CR during release builds. A reviewer’s privi-
leges can be revoked, and Sesame can either invalidate their signatures immediately, or preserve existing

signatures while disallowing future signatures if privilege revocation and signatures are timestamped.
4.6 Implementation

We implement a Sesame prototype in 12k LoC in Rust, including 4.2k LoC for SCRUTINIZER, 2.1k
for Sesame’s web framework, and 0.5k for Sesame’s MySQL library. The web framework and MySQL
library mirror the APIs of Rocket.rs [Ben24] and mysql [bla18], modified to accept PCONs at sinks and
generate PCONSs at sources. Sesame also has partial support for SeaORM [TB21]. All this code is trusted,

as is RLBox (for SRs).

RLBox is primarily designed for sandboxing C++ functions; Sesame generates the necessary wrappers
and bindings to use it with Rust. Our prototype uses RLBox with WebAssembly (WASM), and thus does

not support code and libraries incompatible with WASM in sandboxed regions.

Sesame provides mock versions of its built-in sources and sinks for end-to-end application tests.
These versions strip policy containers from application outputs, and allow testing code to create synthetic
contexts to test policy CHECK functions. Sesame uses Rust’s conditional compilation to ensure these

features are only available in tests.

Finally, Sesame includes linting rules it checks when compiling in release mode. These forbid
developers from manually implementing SESAMETYPE on their custom types, and instead force them to

use Sesame’s [#derive] macros to generate automatic and correct implementations.

Our prototype’s hashing of CRs is sensitive to some syntactic changes to code that have no semantic
effect (e.g., renaming a variable), which invalidate signatures. Better stable code hashing techniques

could improve precision [DRF+17].
4.7 Application Case Studies

We applied Sesame to four web applications: (i) WebSubmit [Sch20] and (ii) Portfolio [JP22] are
pre-existing applications we ported to Sesame; (iii) Voltron is an application from Storm [LKB+21] that
lets group of students collaboratively edit a piece of code with instructor oversight; and (iv) YouChat is a
simple chat application for individuals and groups. The original versions of WebSubmit and Portfolio

have 1.3k and 5.1k LoC. We built a Rust version of Voltron with comparable functionality to the original

73

LiquidHaskell application. For Voltron and YouChat, we first built idiomatic Rust implementations
without Sesame in mind (0.5k and 0.8k LoC) and then ported these implementations to Sesame. This
section describes the applications’ policies and our process porting them to Sesame, while §4.8.1 quantifies

developer effort.

Policies. We added policies for access control, purpose limitation, user consent, and aggregates to the

applications.

YouChat has a single access control policy: users can only view messages that they sent or received,

or messages from groups they are members of.

For Voltron, we implemented all of the policies from Storm [LKB+21]: (i) only admins can enroll
new instructors; (ii) students can only be enrolled into a class by that class instructor; and (iii) code
buffers can only be read or modified by students in the corresponding group or by the class instructor.
The last policy turns into two Sesame policies that cover reads and writes. We also added two additional
policies: (i) Firebase authentication headers from HTTP requests may only be used for read database

queries; and (ii) endpoints may only use the email address of the authenticated user.

WebSubmit is a homework submission system similar to our example in §4.2. Prior to porting to
Sesame, we extended WebSubmit with a machine learning model over students’ grades (training and
inference), and with aggregate statistics for university managers and employers, as well as a user consent
choice to release the latter. WebSubmit has six policies: (i) a student’s answer is only accessible to
the student, instructor, and discussion leaders for the corresponding lecture; (ii) an individual grade is
only accessible to the student and instructor; (iii) a student’s average grade and email are only released
to employers if the student consents; (iv) a student’s data can only be used for model training if the
student consents; (v) university administrators cannot aggregate over protected demographic data; and

(vi) aggregate grade data released must contain grades from at least k different students (min-k).

Portfolio is a high school admissions system deployed in the Czech Republic [JP22]. Candidates
create accounts, input personal information, and upload PDF documents for admission review; Portfolio
encrypts the stored data at rest. We add two policies to Portfolio, which cover the most sensitive data it
handles: (i) sensitive candidate data, in either plain or ciphertext form, is accessible only to the candidate

themselves and to school administrators reviewing their application; and (ii) private keys are never

74

revealed outside of the DB, except in cookies to their respective owners.

Porting Experience. To port these applications to Sesame, we first implemented the policies, then
associated policies with data at sources, and adapted application code to use PCONs instead of raw data.

Finally, we used Sesame to check verified regions, and reviewed and signed any CRs.

Swapping Sesame-provided libraries for the web framework (Rocket) and database connector
(SeaORM in Portfolio, MySQL in others) made the applications fail to compile, as the libraries now
provide PCONs in, e.g., HTTP request data, but the application expects them to be raw types. To fix these
compiler errors, we replaced these raw types with PCONs with an associated policy: for structured data,
this was a quick update to database schemas; for unstructured data, we had to change code that obtains it

from Sesame libraries.

These changes sufficed for simple endpoints (e.g., Figure 4.2), but endpoints that compute on data in
PCoNs still had compiler errors. We fixed these errors by introducing privacy regions, akin to Figure 4.1b.
Rust made this process of lifting code into privacy regions easy, as idiomatic Rust already encourages

closures (e.g., in iterator chains).

With the application building and tests passing in debug mode, we compiled in release mode to
invoke SCRUTINIZER and Sesame’s lints. SCRUTINIZER accepted most regions as verified regions; for
the remainder, we found the distinction between sandboxed regions and CRs obvious (e.g., hashing a
password vs. sending an email). SCRUTINIZER rejected six regions that use an encryption library that
relies on async Rust, even though they are in fact leakage-free. We attempted to make them sandboxed
regions, but the library is incompatible with WebAssembly, so we had to turn these regions to CRs and

review them manually. Replacing the library with a compatible alternative could avoid these CRs.

Anti-Patterns. We found two problematic code patterns. First, because SCRUTINIZER currently lacks
support for async Rust, it rejects regions that contain await. To overcome this, we perform operations
inside the privacy region without await and return a PCON that wraps a future. PCON has an API to
await a wrapped future outside of privacy regions; this is safe because the result remains wrapped in a

PCoN.

Second, some endpoints in Portfolio and WebSubmit early-return, e.g., on failed form validations.

But early-return checks inside privacy region closures cannot return from the surrounding function.

75

Policy App ..of which .. of which

Application count LoC policy CHECK
YouChat 1 1.1k 118 38
Voltron 6 1.2k 425 121
Portfolio 2 6.7k 305 85

WebSubmit 6 2.2k 373 72

Figure 4.6: Policy code size scales with the complexity and number of policies, rather than the size of the
application.

Instead, we return a RESULT<T> from these privacy regions, which Sesame wraps in a PCON with the
appropriate policy. Sesame’s FOLD API (§4.4) lets the application fold it into a RESULT<PCON<T,
P>>. This allows early-return when the RESULT is an error, but creates a channel for implicit leakage.
Policies can disable this if unacceptable, forcing the remaining code to operate on the RESULT monad

instead and defer the early return.
4.8 Evaluation

We evaluate Sesame with four applications: YouChat, Voltron, Portfolio, and WebSubmit. We ask

three questions:

1. What developer effort does using Sesame require? (§4.8.1)
2. What is the impact of using Sesame on end-to-end application performance? (§4.8.2)

3. What is the impact of key Sesame components on its correctness and performance? (§4.8.3)

Our benchmark machine has a Xeon E3-1230v5 CPU (3.4GHz) and 64 GiB RAM. We use Ubuntu 20.04,
Rust nightly-2023-10-06 for sandboxes and nightly-2023-04-12 for static analysis.

4.8.1 Developer Effort

We evaluate the developer effort required to implement applications with Sesame or to port them as

described in §4.7.

Implementing Policies. A critical component of writing an application with Sesame is implementing
policies. Ideally, the size of these policies and the effort required to implement them should depend on

the complexity of the policies themselves, rather than application size.

We thus measured the size, in LoC, of the policies in our four applications. Policy code includes the

policy structs, constructors, the Policy trait implementations, and the CHECK functions. The CHECK

76

#of Total % Size
Application Region regions of App (LoC)

YouChat VR 3 <1% 1-5
VR 3 <1% 1-2

Voltron CR 2 <1% 37
VR 43 1.2% 1-8

Portfolio SR 6 <1% 1-5
CR 20 1.4% 1-27

VR 17 2.0% 1-9

WebSubmit SR 2 1.0% 4-19
CR 2 1.3% 8-22

Figure 4.7: Counts and sizes of each Sesame privacy region used. This accounts for the size of the
top-level region closure, but not helper functions that require no porting effort.

function typically dominates the developer effort for policy authoring.

Figure 4.6 shows the results. Policy complexity varies based on the diversity of application user roles
and purposes of data use. For example, Voltron (1.2k LoC total) is a small application, but it contains
a complex hierarchy of user roles, so its policy code is comparatively large (425 LoC). By contrast,
Portfolio is the largest application (6.7k LoC), but it has fewer, simpler policies, as it collects broad data
(academic history, letters, demographics) but for the same purpose (viewing by admissions officials).
This indicates that effort for writing Sesame policies reflects the complexity of the application’s data-use

semantics, rather than application size.

We compare the three policies Storm [LKB+21] implements for Voltron with the equivalent policies
in Sesame. In Sesame, the CHECK functions for these policies consist of 88 Rust LoC, compared to 37
and 17 LiquidHaskell LoC for policy and “non-trivial type annotations” in Storm. This suggests that
writing policies for Sesame requires comparable effort to existing work. In addition, Sesame can express

more diverse policies, such as min-k or k-anonymity, that depend on runtime state.

Using Policy Containers. Writing a Sesame application requires developers to use PCONs to associate
data with policies, to change types to PCONs where necessary (e.g., in function signatures), and to add
privacy regions. To quantify this effort, we consider our experience porting Portfolio to Sesame. Porting

an existing application is more work than writing a new one that already anticipates these abstractions.

Porting Portfolio took 30 person-hours. We changed types in five ORM and four JSON payload structs

to associate policies with structured data. For unstructured data, e.g., cookies and GET parameters, we

77

Applications LoC # CRs H Burden % Avg Burden

YouChat 1.1k 0 - -
Voltron 1.2k 2 <1% 5 LoC
Portfolio 6.7k 20 5.0% 16.8 LoC
WebSubmit 2.2k 2 1.5% 16.5 LoC

Figure 4.8: Critical region count in applications. Burden % indicates the fraction of code that needs
review; average burden is the average size of in-crate code for CRs.

declared the policy type on each read. We spent the majority of porting time adjusting function signatures
to use PCONs. This is largely mechanic and guided by compiler type errors that indicate where changes
are needed. Compiler errors related to PCONs also pointed us to application logic that requires raw data,
and we lifted this logic into privacy region closures. Across our applications, this required no structural
changes (e.g., moving code between functions or changing control flow). Sesame requires a few dozen
privacy regions for Portfolio, and smaller applications require fewer (Figure 4.7). Overall, we had to lift

1-4.3% of application code into region closures.

Critical Region Review. We now consider the review effort for critical regions. A good result for

Sesame would show that critical regions are slim and infrequent.

Figure 4.8 shows the number of critical regions and their review burden in terms of in-crate code to
audit. In all applications, critical regions are small and shallow: the review burden in Portfolio makes up
5% of application code including the CR closures and all their in-crate helpers. Portfolio has 20 CRs with

an average review burden of 17 LoC each.

CRs often invoke external dependencies in addition to in-crate code, so the review burden extends to
auditing these dependencies. Reviewers may leverage organizations’ existing supply chain audit protocols

for approving dependencies and updates to reduce review burden.

These results suggest that Sesame focuses reviewer attention on infrequent, small, and contained code

regions.
4.8.2 Application Performance

Next, we evaluate Sesame’s impact on end-to-end application performance using WebSubmit and
Portfolio. PCON encapsulation adds overhead due to pointer indirection and the additional memory

footprint of policies; runtime policy checks and the use of sandboxes may also incur overhead. We

78

WebSubmit Portfolio

[E—
)
1
T
o
)

B Baseline Sesame

20
oM l l :(1)0

SEIS \f (\e\ des _oates £O 11421 1 qateS
Regist® \geﬁm“ \)ted‘ 8;3 A%g%%ﬂ o Ca a%;t Cand¥

()
1

Latency [ms]

o 1o
\0Y ga e

Figure 4.9: Sesame has reasonable performance overheads for WebSubmit and Portfolio (solid: median;
shaded 95™ %-ile).

I Function B Setup + Tear M Function B8 Setup + Tear . 260 A Il Baseline

— 85 - 2 Copy — 4600 % Copy g I Naive Sesame
é— 75 é— 4400 - : 250 9 p sesame .
© < Z o 29
E 207 E 400 g 20
= = E

10 A 200 A 10 7

0- 0 - 0-
0N det
doo* 6\30% Joor JoO* 400 L Joo* p,dﬁ“ on Led

No Sa& Ve SM\ . San No a% Ve S‘M\O?‘_ San D\SC\)S

(a) Reuse optimizations speed up a (b) Copy optimizations speed up a (c) Policy composition avoids re-
sandbox running a cheap hash func- sandbox running ML training by peated policy checks (median;
tion by 4x. 11x. 95" %-ile shaded).

Figure 4.10: Drill-down experiments: Sesame benefits from sandbox reuse reducing setup/teardown
overhead (a) and from direct copies avoiding serialization of data passed into the sandbox (b); policy
composition reduces check overheads (c). Functions run 2 x slower in the sandbox because of the WASI
runtime [Clal9] and inserted dynamic checks, e.g., on pointer dereferencing.

compare (i) the baseline application, and (7i) application with Sesame. We use a database with 100
students and 100 homework questions for WebSubmit and an admission cohort of 1k candidates (one
application each) for Portfolio. We measure endpoint latency for HTTP endpoints that use privacy regions
and/or require policy checks. A good result for Sesame would show comparable latencies with and

without Sesame and acceptable overhead for sandboxed operations.

Figure 4.9 shows the results. WebSubmit performs API key hashing during user registration (“Register
Users”) and ML model training (“Retrain Model”) in sandboxed regions. These endpoints with sandboxed
regions see 10% and 55% overhead, most of which is due to the cost of copying data into the sandbox.

User registration (10% overhead) copies a single record into the sandbox (tail latency is due to DB disk

79

I/O); retraining the ML model transfers the grades of all consenting users to the sandbox (55% overhead).
“Get Aggregates”, which computes statistics over the whole class, and “Get Employer Info”, which
computes average grades for release to employers, have a 1-3% overhead. Both endpoints combine many
students’ data, which can have different policies that cannot be folded together into a single policy, so
Sesame must perform repeated policy checks. “Predict Grades” has a 10% overhead, albeit with low

absolute latency as grade inference operates on an in-memory model without I/O.

Portfolio’s “Update Candidate” writes candidate demographics to the DB on disk. It performs JSON
serialization in a sandboxed region, resulting in a 25% overhead. “List Candidates” has admins retrieve a
paginated list of 20 applications. Sesame uses FOLD to combine the candidates’ policies into a single

policy check, resulting in a 10% overhead.

These results indicate that PCONs and policy checks impose low overheads, while the cost of

sandboxing scales with the size of the data copied into the sandbox.
4.8.3 Drill-Down Experiments

We now evaluate key components of Sesame—SCRUTINIZER, sandboxes, and policy composition—in

isolation.

SCRUTINIZER. Sesame’s guarantees depend on sound rejection of leaking regions. Simultaneously,
if SCRUTINIZER accepts genuinely leakage-free regions, this avoids sandboxing overhead and manual
review. We evaluate SCRUTINIZER on 98 privacy regions across our four applications: 80 that we
manually verified as leakage-free, and 18 that we know to be leaking. In a good result, SCRUTINIZER

would accept most leakage-free regions and reject all leaking regions.

Figure 4.11 shows the results of running SCRUTINIZER over regions we know to be leakage-free.
SCRUTINIZER successfully verified 66 of 80 regions, but conservatively rejected two regions in Web-
Submit and twelve in Portfolio. Six of the rejected regions use async code not currently supported by
SCRUTINIZER. The remaining eight regions perform cryptographic hashing, encryption, ML training,
and CSV serialization via external libraries that dereference raw pointers for performance. With extra
engineering effort, SCRUTINIZER should be able to verify some of these as leakage-free. SCRUTINIZER

correctly rejects all 18 leaking regions.

We also evaluated SCRUTINIZER on methods from standard library containers—a challenging test, as

80

Privacy Regions

Leak- - of those, Functions
Application free accepted Analyzed Time
YouChat 3 3 823 2.31s
Voltron 3 3 11 0.80s
Portfolio 55 43 774,624 711.61s
WebSubmit 19 17 332,326 500.52s

Figure 4.11: SCRUTINIZER accepts the majority of leakage-free regions, avoiding sandboxing overheads
or the burden of manual review. SCRUTINIZER rejected all leaking regions.

the standard library extensively uses unsafe code for performance. SCRUTINIZER rejected all leaking

methods, and rejected two out of 57 leakage-free methods.

Sandboxes. To measure the cost of sandboxing, we consider the sandboxed regions in WebSubmit:
“Register Users” and “Retrain Model”. The former computes a hash over a short string and the latter
fits a linear regression model to thousands of rows. We compare the runtime of executing the two
privacy regions (i) without a sandbox (the baseline); (ii) in a sandbox without any optimizations (‘“Naive

Sandbox”); and (iii) in a sandbox with reuse and copy optimizations (§4.5.2).

The results are in Figures 4.10a and 4.10b. Compared to the baseline, the naive sandbox adds
substantial overhead: sandbox setup and teardown dominate the (fast) hashing sandbox’s runtime
(Figure 4.10a), while data copying via serialization dominates for ML training, which operates over more
data (Figure 4.10b). With optimizations, the overhead of sandboxes decreases substantially. Reusing
sandboxes after erasing their memory improves the hashing sandbox’s runtime by 4 x. Copying data and
swizzling pointers reduces data copy time by 29 x and overall runtime by 11x compared to an naive,

serialization-based ML training sandbox.

In both cases, the actual code of the region itself (“Function”) takes roughly twice as long as without

sandboxing, in line with overheads reported by RLBox [NDG+20].

Policy Composition. We now measure the performance impact of policy composition using FOLD. We
use two endpoints from WebSubmit that display homework answers to course staff and discussion leaders,
for a setup with 100k answers (100 students, 100 lectures). Releasing homework answers requires
evaluating the AnswerAccessPolicy: answers are shared only with authors, admins, or discussion

leaders. The list of admins is part of the application’s in-memory configuration, while discussion leaders

81

must be retrieved with a database query. In the discussion leader case, each policy check requires a
database query, and joining policies that have the same discussion leaders reduces this policy check to a
single database query. The experiment measures the impact of this policy join, and its overhead for the

admin case, where the policy check is inexpensive.

Figure 4.10c shows the results: retrieving answers without policy composition for the admin endpoint
incurs a 1.4 x performance overhead compared to a policy-free baseline, while retrieving answers with
policy composition incurs a 1.6 x overhead. For the discussion leaders endpoint, retrieving answers
without policy composition has a 27x overhead, while the same operation with policy composition incurs
a 1.5x overhead. This experiment indicates that policy composition is a worthwhile abstraction: while it
incurs some additional overhead when policy check execution is cheap, it cuts the cost of policy checks

when execution is expensive.

4.9 Discussion

Critical Regions and Declassification. Classic IFC approaches support declassification of data, which
exceptionally allows data to be revealed to principals who otherwise would not be allowed to access
it. Declassification is required because (i) noninterference is often stricter than the real policies desired
by some applications, and (ii) IFC systems are almost always too conservative since it is undecidable
to precisely capture information flow in real programs [Zda04]. Policy enforcement systems also face
similar problems when applications interact with components they cannot analyze or whose semantics
are too low-level or tedious to reflect in the policies, e.g., when using libraries. As a result, such systems

also provide applications with escape hatches similar to declassification (e.g., filter objects in Resin).

Thus, declassification supports two distinct cases: (i) explicit and intended violations of the policy,
and (ii) behavior that is semantically in line with the policy, but is too difficult for the system to analyze.
In either case, application developers must ensure that they use the data as intended after declassification
on their own without system support. Another pitfall of this approach is that developers may think that
their intended behavior falls under the second case, when, in fact, it violates the policy. In some scenarios,

developers may revise that behavior if they are made aware of this discrepancy.

In its design of critical regions (CRs), Sesame aims to tease these two cases apart. By default, Sesame
performs an automatic policy check before invoking a CR. This ensures that the intended behavior of

the CR, as defined by the corresponding context object, is allowed by the policy and thus corresponds

82

to the second declassification case above. Application developers can use a different Sesame API to
execute a CR without a policy check, which corresponds to the first declassification case. In our case
studies, we only needed to use this API in Portfolio to intentionally relax the policy associated with a
user’s admission application after encrypting it, so that we can write the cipher to a file. We discuss future
ideas that aim to streamline and simplify such policy transformations in §6.2.3. All other CRs in our case
studies correspond to the second declassification case, such as the CR in WebSubmit that sends email

receipts when a student submits an answer.

For both CR types, Sesame helps developers ensure that a CR’s implementation matches what the
developers intuitively intended. First, CRs have a clearly delineated scope and declare their intended
behavior in the corresponding context object, which simplifies their review. Second, Sesame’s code
signature mechanisms protect against inadvertent future changes that may affect a CR or its helper

functions after it has been reviewed.

False Positives in Scrutinizer. SCRUTINIZER is sound but incomplete. It never accepts a region that
leaks sensitive information, but it may incorrectly reject regions that are in reality leakage-free. We
refer to such regions as false positives and give some representative examples taken from our case study

applications.

The first category of false positives we encountered is code that uses highly-optimized native libraries.
This includes the hashing and encryption libraries used in WebSubmit and Portfolio, respectively, which
rely on native implementations and hardware instructions that SCRUTINIZER cannot access or analyze.
The second category includes regions where sensitive data flows into unsafe Rust. Portfolio contains
one such region that performs JSON-serialization via serde. The region serializes sensitive data into a
string, which Sesame then places into a PCON, and thus is leakage-free. However, internal serialization
processes involve incremental writing of bytes to a raw unsafe buffer that SCRUTINIZER conservatively

rejects, because it cannot determine whether the buffer points to a global variable.

One particularly troublesome category of false positives involves string formatting in Rust. The
underlying code in the standard library contains type-erased dynamic dispatch, where the formatter gets
transformed into a raw function pointer with a common signature. Instead of rejecting such regions and
falling back to sandboxing, we elected to allow-list specific string formatting APIs in the standard library

in order to improve developer ergonomics. We manually confirmed that these APIs are leakage-free.

83

Object Capabilities (OCaps) and PCONs. On the surface, one can view a PCONs as a kind of
imperfect capability. Specifically, if an application has a PCON<T, P> that contains some data ¢ : T’
and a policy instance p : P, then this is proof that an application is allowed to externalize ¢ according to
p. Although a policy instance (and therefore their enclosing PCON) may contain state, it often does not
contain the entire state needed to determine how its associated data may be externalized. For example,
the AnswerAccessPolicy shown in Figure 4.3 stores the author’s email, but not the discussion leaders

that are allowed to access the data.

However, there is a deeper connection between the object capabilities model [Mil06] and Sesame.
Sesame forces applications to adhere to the following code pattern: (i) Sesame provides applications with
input data wrapped in PCONs along with their corresponding policies, (ii) Sesame forces applications to
structure their code into privacy regions by virtue of the PCON API design and the Rust type system. The
outputs of privacy regions are also wrapped in PCONs with the same (or stronger) policies as their inputs.

(iii) Sesame allows applications to externalize data out of a PCON after checking the associated policy.

Thus, application components may only posses a PCON containing some data and policy by reading
data from sources via Seasme or via a sequence of privacy regions starting from such a source. In OCaps
terminology, the first case corresponds to initial conditions and parenthood, while the later represents a
sequence of endowments and introductions, corresponding to invocations of privacy regions with one
or many arguments, respectively. Furthermore, by combining several PCONs via privacy regions or
Sesame’s Fold API (§4.4), the application can create a new PCON with a more restrictive conjunction

policy, which it can then pass to other application components with attenuated privileges.

We envision supporting more expressive policy transformations that allow for strengthening policies
in custom application-defined ways beyond conjunction. These transformations may help in extending
Sesame’s end-to-end guarantees to applications that invoke remote services (see §6.2.3), and would mirror

the membrane forwarder pattern in OCaps.

Several implementations of OCap systems ensure unforgeability by modifying popular languages to
prevent various “loop holes”. For example, Joe-E [MWCI10] is a subset of Java without reflection and
native functions, and Caja [MMT10] is a subset of Javascript without global free variables. In contrast,
Sesame relies on static analysis and sandboxing to ensure leakage-freedom (which implies unforgeability

of PCONs) at the level of individual privacy regions, instead of language- or program-wide restrictions.

84

1 fn make_vector(x: &String) -> Vec<String> { 1 fn make_vector<T: Clone>(x: &T) -> Vec<T> {
2 let y: String = x.clone(Q); 2 let y: T = x.clone();

3 let mut v: Vec<String> = Vec::new(); 3 let mut v: Vec<T> = Vec::new();

4 v.push(y); 4 v.push(y);

5 v 5 v

6 %} 6 %}

(a) A function that clones a String and returns a (b) A polymorphic variant of the same function that
vector containing the copy. accepts any cloneable type.

Figure 4.12: Two examples of functions that consist of glue code. a is implemented with concrete types,
even-though that concreteness is not required. b provides equivalent functionality but is implemented
polymorphically over any cloneable type.

Interestingly, SCRUTINIZER checks for invocations of native and unsafe functions, mutation of global
variables, and potentially dangerous type casts, which are similar to the restrictions imposed by OCap
languages. An open question is whether Rust could enable OCap systems with less restrictions or better

ergonomics e.g., by relying on a SCRUTINIZER-like static analysis.

What Constitutes Glue Code? A key aspect of Sesame’s design is that it enforces policies over the
vast majority of application code with little to no developer intervention by hiding sensitive data inside
PCoNs. Instead, Sesame focuses its static analysis and sandboxing mechanisms, as well as the developer
intervention, on the remaining code. We call the former glue code and refer to the latter as privacy
regions. Note that the notion of glue code characterizes whether a developer needs to use a privacy region,
and thus the amount of developer intervention required to implement some functionality using Sesame.
Thus, glue code corresponds precisely to code that can be invoked with arguments of type PCON<T,
P> and T interchangeably with no more than simple syntactic changes to type declarations in it. This is
closely related to the parametricity of the code, regardless of whether the code is actually implemented

parametrically or whether the type parameter is “imagined”.

Consider a valid Rust function f that passes the Rust type checker. For simplicity, assume that the
function takes a single argument of type 71" and returns a value of type R7. As a first attempt, let us say
that f consists of glue code if we can invoke it on arguments of type PCON<T, P> to acquire results
of type Rpcon<T,p> (for any P) without any changes. It is easy to see that any f that is parametrically
polymorphic over 7' without any restrictions satisfies this. In Rust, such functions would have the

signature fn f<T>(t: T) -> Rr.

Furthermore, f also satisfies this definition if it poses type constraints on 7' that are also met by

85

PCON<T, P>. For example, Sesame’s PCONs implement Clone and Copy when their underlying types
do. In addition, PCONSs also inherit certain implementations of Into and From for standard library types.

Thus, a Rust function with signature fn f<T: Clone>(t: T) -> Ry also consists of glue code.

Note that application developers often implement their functions with concrete, rather than poly-
morphic, types even when that concreteness is superfluous. For example, a developer may implement a
function as shown in Figure 4.12a, even though they really could have implemented it in a more generic
and reusable way as shown in Figure 4.12b. The latter function clearly constitutes the glue code as it can

be invoked with arguments of types String and PCON<STRING, P> interchangeably.

On the other hand, to invoke the first function on arguments of type PCON<STRING, P>, de-
velopers would need to modify its signature to fn make_vector(x: &PCoN<STRING, P>) ->
Vec<PCoN<STRING, P> > and then update its body accordingly. However, updating the function’s
body in this case is syntactic: It merely changes the type declarations on lines 2 and 3. Furthermore, given
that developers often omit these types and rely on Rust’s type inference instead, updating the body may
be unnecassary in practice. Thus, we consider the first function to also be glue code with an “imagined”

type parameter T: Clone.

Contrast this to a function that adds two integers together or prints a string to the screen. Neither
function can be invoked on PCONs with only syntactic type changes to its signature and body, since

PCoNs do not implement addition or the Debug trait required to print to the screen.

Sesame’s design could be extended to expand what it counts as code glue and thus can handle without
developer intervention. Specifically, we can allow PCONs to structurally inherit all traits that their
underlying types implement, by applying the trait functions on the underlying data and wrapping the
output in a new PCON, akin to a monad. However, this requires further engineering to automatically
apply SCRUTINIZER to such trait implementations first to ensure that they are leakage-free, and to avoid

inheriting rejected implementations.
4.10 Summary

Sesame is a framework to help developers enforce application-specific privacy policies over user
data across an application. Privacy regions allow developers to operate over policy-protected data by

leveraging runtime policy checks, static analysis, sandboxing, and human code review.

86

We show that Sesame requires modest developer effort, incurs acceptable overheads, and provides

practical end-to-end privacy compliance guarantees.
Sesame is open-source software and available at:

https://github.com/brownsys/sesame.

87

https://github.com/brownsys/sesame

CHAPTER 5

Case study: GDPR Compliance in Practice

In previous chapters, we looked at the design and technical capabilities of K9db and Sesame. K9db
provides automatic procedures for handling GDPR-style access and deletion requests, and enforces
storage invariants to ensure data is encrypted at rest and that the integrity of ownership and access is
preserved. Sesame assists developers in ensuring that their application code and business logic adhere
to the privacy policies they specify. Sesame supports diverse and rich privacy policies that range from

access control to consent, purpose limitation, and aggregation policies.

K9db and Sesame provide building blocks that can ensure that applications comply with the privacy
policies that their developers set. These policies may express low-level and internal properties that
developers would like their applications to have, but we also envision them including application-specific
interpretations of the requirements imposed by privacy laws. For example, the GDPR requires applications
to allow users to request the deletion of their data, which K9db can automatically do if used and configured
properly. GDPR also requires that applications collect data for specific purposes and only use that data for
these purposes (purpose limitation), e.g., that applications that state that they only collect phone numbers
for two-factor authentication do not, in fact, use them for a different purpose. Sesame can enforce such a
policy throughout the entire application end-to-end if the policy is encoded and associated to the relevant

data correctly.

In this chapter, we take a closer look at (i) how application developers use K9db and Sesame to
get compliance guarantees with privacy laws in practice, and (ii) how that compares with the current
practice which relies on ad hoc and manual enforcement. Specifically, we look at the configuration and

socio-technical work that applications need to do in order to comply with laws using these systems.

88

Generally, this work falls into two categories:

1. Correctly configuring K9db and Sesame with annotations and policies that encode and contextualize
the high-level requirements of privacy laws with respect to their application-specific concepts and

business logic (§5.1).

2. Integrating K9db and Sesame into their application workflows, including how they interact and

interface with end users without a technical background (§5.2).

This chapter showcases what these categories entail by looking at a case study application: WebSubmit.
We describe the work we had to do in each of these categories for WebSubmit in order to comply with the
specific GDPR requirements discussed in §2.1. We also discuss a hypothetical approach to achieving
comparable compliance in WebSubmit without system support and compare the developer burden it

imposes to that of K9db and Sesame (§5.3).

This exposition is informed by our experience deploying a K9db-powered version of WebSubmit for
the fall 2023' and 20247 offerings of CS2390, our graduate seminar on privacy-conscious systems, and
building a deployment-ready version of WebSubmit that uses both K9db and Sesame that we will deploy

for the 2025 offering of the course.
5.1 Configuring K9db and Sesame for Compliance
5.1.1 Schema Annotations

Application developers must annotate their schema with the appropriate K9db ownership, access, and
anonymization annotations. K9db handles deletion and access requests according to these annotations
and enforces their integrity throughout the execution of the application. Thus, whether an application
complies with GDPR-style rights to access and deletion depends on whether the annotations encode

reasonable ownership and access semantics consistent with the law.

We note that for a given application, there are usually several compliant ownership-semantics (and thus
K9db annotations) that application developers may choose. The law intentionally gives applications some
leeway in determining whether to retain some of the user’s data and, if so, the extent of its anonymization.
For example, a social media application can choose to delete a direct message between two users after

either or both of them request deletion and still be compliant, but it is likely to be incompliant if it never

"https://cs.brown.edu/courses/csci2390/2023/index.html
Zhttps://cs.brown.edu/courses/csci2390/2024/index.html

&9

https://cs.brown.edu/courses/csci2390/2023/index.html
https://cs.brown.edu/courses/csci2390/2024/index.html

5

4
5

6

CREATE TABLE lectures (
id INT PRIMARY KEY AUTO_INCREMENT,
title TEXT,

DN

CREATE TABLE questions (
id INT PRIMARY KEY AUTO_INCREMENT,
question TEXT,

)N

CREATE DATA_SUBJECT TABLE users (
email TEXT PRIMARY KEY,
apikey TEXT UNIQUE,
is_admin INT,
consent_employers INT,
consent_ml INT,
is_remote INT,

N

CREATE TABLE discussion_leaders (
id INT PRIMARY KEY AUTO_INCREMENT,
lecture_id INT REFERENCES lectures(id),
email TEXT OWNED_BY users(email)

H

CREATE TABLE answers (
id INT PRIMARY KEY AUTO_INCREMENT,
lecture_id INT REFERENCES lectures(id),
question_id INT REFERENCES questions(id),
author TEXT OWNED_BY users(email),
answer TEXT,
grade INT,

N

Figure 5.1: Excerpt from WebSubmit schema showing the K9db annotations we applied. The users
table stores profile information for students and teaching staff and represents data subjects. It also stores
the user’s consent preferences for releasing data to potential employers and participating in our ML
experiment. These fields configure our consent-related Sesame policies for WebSubmit. An answer is
owned by its author. The discussion_leaders table is a many-to-many mapping between students and
the lectures whose discussion they are assigned to lead. Records in this table are owned by the student
they refer to.

deletes the message. Ultimately, whether a particular way of annotating the schema is compliant is a
case-by-case determination that depends on the application business logic, the sensitivity of the data, and
the legitimacy of other factors that influence data retention (e.g., compliance with other laws, contracts,
or public interest). We discuss a general blueprint that can serve as a starting point for selecting the

underlying ownership semantics and annotating the schema for an application.

Blueprint for Access and Deletion Rights. In general, data that is directly provided by a user (e.g., by

90

submitting a form) or derived from interactions with that user (e.g., interaction history) should be owned
by that user. This is why we chose to annotate the author foreign key with OWNED_BY in the answers
table in WebSubmit’s schema, which is shown in Figure 5.1. When a table only has one ownership
annotation point to a single owner, that user has complete and exclusive deletion rights over the data in

the table.

Some data is unrelated to any users. This may include configuration data and data that are not derived
from user interactions. For example, a list of country codes or currency exchange rates in a shopping
application may fall into this category. Another example is the lectures and questions created by the

teaching staff, which are required for the core operation of WebSubmit, and should never be deleted.

Data may also be related to other secondary users. Developers can identify this by looking at outgoing
foreign keys in the table that stores this data. Developers have three options for foreign keys that lead to
such secondary users. First, they can annotate these foreign keys with OWNED_BY or OWNS if the developers
determine that there is a particularly pronounced and legitimate reason to retain such data for the benefit
of these secondary users. This bar is higher the more sensitive and explicitly identifying the data is, e.g.,
it is more reasonable to retain an upvote on some user’s post than the phone number associated with that
user’s account. Second, they can annotate foreign keys that lead to a secondary user with ACCESSED_BY
or ACCESSES if the data is somewhat related to or derived from the secondary user, but not to a degree that
gives these secondary users the right to control its retention. In either of these two cases, the developers
need to determine whether to anonymize some data on deletion or access, respectively. A starting general
principle is to anonymize identifying information about a user that requests deletion of jointly owned
data, or about other related users when some user issues an access request. Lastly, developers can choose
not to annotate such foreign keys to indicate that secondary users have no deletion or access rights, e.g., a
re-share or fork of a social media post or code repository. An example of this is the implicit relationship
between answers and discussion leaders via the lectures table. In our view, discussion leaders do not
have access or deletion rights over records in lectures or the answers submitted by other students to

questions assigned to that lecture.

We believe that the above blueprint is sufficient for a wide range of application scenarios with some
exceptions. These exceptions include data that should be retained regardless of the status of any of its

related users, e.g., transaction histories for tax compliance. The application developers should make

91

sure they have a legitimate reason for retaining such data, as enumerated by the law. If so, they can
express this by not annotating any of the related foreign keys with OWNED_BY, and adding anonymization
annotations for sensitive fields that they do not have a reason to retain, if any. Another exception is data
that should be deleted as soon as any of its related users request deletion, e.g., a secret chat in a messaging

app. Developers can express this using ON DEL <foreign_key> DELETE_ROW.

Compliance with Data Security. K9db encrypts the data at rest, which directly satisfies a portion of the
data security requirements required by privacy laws, such as GDPR. Furthermore, K9db uses user-specific
encryption keys for that user’s data, provided that the ownership annotations attached to the schema are
compliant as described above. As a result, K9db’s deletion mechanism is compliant even in the presence
of (encrypted) backups, including cases where these backups are not directly updated during deletion
(e.g., for performance reasons). Nevertheless, we recommend that such backups be periodically deleted
or updated, but this can happen on a longer time scale (e.g., years), e.g., in order to protect against future
adversaries with possible encryption breaking capabilities (e.g., much more powerful future machines or

quantum adversaries).

In addition, privacy laws require that applications put other technical measures in place to ensure
that data can only be accessed by authorized users. This requirement goes beyond the scope of K9db,
and instead falls in the purview of Sesame, as it governs application code, except for one subtle issue.
Application developers may mistakenly annotate their schemas with overly-lax access annotations, which
may result in K9db returning data that a user should not have access to when they issue an access request.
Sesame can also protect against this at runtime if the access request workflow is properly integrated into
the application, we discuss this later in §5.2. Furthermore, we propose future extensions that statically
find such inconsistencies between the GDPR access semantics declared by K9db annotations and the

application-level access control policies used by Sesame (§6.2.2).
5.1.2 Sesame Policies

Application developers can enforce complex privacy policies using Sesame. In our experience, this is
powerful enough to express many privacy laws requirements as well as other security and business logic
properties that go beyond compliance. To ensure compliance, application developers need to translate the
high-level legal requirements to concrete Sesame policies over specific application concepts, e.g., columns

in the database or application purposes. At a high level, the policies necessary for compliance within

92

scope in this dissertation fall under one of data security, purpose limitation, or user consent requirements.

Access Control and Data Security. Laws commonly require ensuring proper user authentication and
that data is only accessible to authorized users. As shown in §4.7 and §4.8, developers can express and
enforce such policies with reasonable effort. Sesame enforces access control throughout the application,
including data that is rendered to end users in response to HTTP requests, as well as custom sinks such as

sending an email or invoking a third-party API, e.g., for targeted advertisement.

Application developers may elect to define a “blanket” access control policy that applies to many
types of data, e.g., in WebSubmit, nearly all data related to an answer is accessible to the teaching staff
and the student who submitted the answer. Then, they can augment that policy with additional stipulation
for specific data types, either to make it accessible to more users, e.g., the answer text is additionally
accessible by the relevant discussion leaders (Figure 4.3), or to make access more stringent. Common
examples of this pattern include data that applications collect for internal purposes (e.g., authentication),
data that falls into protected categories (e.g., health data protected under HIPAA), or data about protected
individuals (e.g., children). Developers can perform this augmentation either by defining a new policy
specific to the data in question, and assigning it as the sole policy for those data, or by combining multiple

sub-policies using PolicyAnd or PolicyOr.

Generally, we recommend having a smaller number of policies that can be composed together for
different data types, rather than a new standalone policy per each combination. This is because our results
show that a large part of the developer effort when using Sesame is in policy design, which scales with

the number of policies in the application.

Finally, we note that, in some cases, whether a user or entity has access to some data depends on
the consent of the user or the purpose of access. Developers can express this by combining their access

control policies with purpose or consent policies, which we discuss next.

Purpose Limitation. Privacy laws require that services collect data for specific purposes and only
process the data for the stated purposes. End-user facing privacy policies and terms of services often
enumerate these purposes in relatively vague prose and describe the types of data they apply to. To

enforce such policies using Sesame, developers need to do two things.

First, they must label application sinks with their corresponding purpose. One approach is to attach

93

1 #[db_policy(table = "answers", columns = ["grade", "author"])]
2 struct EmployersReleasePolicy {

3 author: String

4%

5 impl Policy for EmployersReleasePolicy {

6 fn check(&self, context: Context::0ut) -> bool {

7 let purpose: String = context.purpose;

8 if purpose == "emp" {

9 return DB.query("SELECT consent_employers FROM users WHERE email = {}", self.author);
10 }

11 return false;

12 1}

13 %}

14 impl DBPolicy for EmployersReleasePolicy {
15 fn from_row(row: &MySQLRow) {

16 EmployersReleasePolicy {

17 author: row.get("author™)
18 }

19 3

20 }

Figure 5.2: Policy governing release of students emails and grades to potential employers. This policy
rejects releasing grade or emails unless it is for the "emp’ purpose and with explicit user consent. In
WebSubmit, we also attach other policies to these columns using a PolicyOr, e.g., to allow releasing
data to authorized users, such as the teaching staff, or for other purposes.

one or more purpose labels to application endpoints. For example, we attach the ’emp’ and 'm1’ purposes
to the WebSubmit endpoints that show student information to employers and perform our grade prediction
machine learning experiment, respectively. Sesame adds these purposes to the Context object prior
to performing any policy checks. Earlier work follows a similar approach, e.g., RuleKeeper [FBS+23]
requires application developers to map endpoints to purpose labels in a manifest file. Second, developers
must attach a list of permitted purposes to specific data types or database columns. They do so by
implementing custom policy types that only accept contexts with one of the allowed purposes, or by using

a generic purpose-limitation policy configured with the specific permitted purposes.

Web applications often contain core purposes that users consent to by using the application and cannot
opt out of. For example, the core purpose of WebSubmit is to collect homework answers and grade them.
For such purposes, developers can write simple, unconditional Sesame policies that merely check the

purpose labels in the context object.

Consent and The Right to Object. Web applications also commonly contain non-essential purposes
that users can opt out of while continuing to use the core components of the application. Privacy laws

require that many forms of third-party data sharing, including advertisement, fall in this category, e.g.,

94

the CCPA’s right to opt-out of sale or sharing. For example, WebSubmit only shares student emails and
average grades with potential employers with that student’s explicit consent. This may also apply to
custom, application-specific non-essential purposes that laws do not explicitly identify. For example,
WebSubmit requires users to give explicit consent before using their data in the grade prediction machine

learning algorithm.

In our experience, application developers use consent to conditionally allow using data for a purpose
or sharing data with a particular user or entity, e.g., conditionally allow the emp’ or ml’ purposes given
the user consent in WebSubmit. In this case, developers need to look up the user’s consent in their policy
check function alongside the purpose or access control checks, or combine a consent-checking policy
with the other policies using an And. A common approach is to store the consent value in the database

and retrieve and check it in the policy check function, as shown in Figure 5.2.

Finally, we note that cookie-related consent and banners, which are widely required by privacy laws,
constitute a special case of consent-based policies. Cookies are a built-in sink in Sesame. Thus, when
the application attempts to externalize the data via a cookie, Sesame adds all information related to that
cookie to the context object prior to invoking the policy check. Policy developers can then perform
additional consent checks during their policy checks for cookies to ensure that the end-user’s cookie

preferences are respected, including for guest users without accounts.
5.2 Integrating Compliance Into Application Workflows

Application developers can follow the guidelines described above to configure K9db and Sesame with
annotations and policies that reflect their application’s legal privacy requirements. Following that, they

must ensure that these systems interface correctly with the application’s end-users.
5.2.1 Human-Readable Privacy Policies

Privacy laws require that their applications inform their users of a summary of their privacy policies
in a human-readable form. Usually, this takes the form of human-language documents that spell out what
types of data the application collects, what purposes it collects and uses them for, the lawful basis for this

processing (e.g., user consent), and which data the application may share with third parties.

Developers should ensure that these human-readable policies are consistent with how they configured

KO9db and Sesame. One benefit of Sesame is that policies are centralized and defined declaratively,

95

CSCI 2390: Privacy-Conscious Computer Systems Submission home — Course website

Welcome to the CSCI 2390 submission system!
Sign up:

Your email address:

Your major:

]

Your year:
Your gender:

Are you a remote student? [
Do you consent to releasing your data to patential employers? If you consent, we might share your email and average grade. |

Do you consent to participate in our machine learning grade prediction experiment? [

| submit |

Powered by Sesame and K9db.

Figure 5.3: The account creation page in WebSubmit allows students to specify their consent preferences.
WebSubmit stores these preferences in the database and checks them in the relevant Sesame policies, e.g.,
releasing students emails and grades to employers if they consent (Figure 5.2).

including their associations with data types and database columns (e.g., through the db_policy macro).
Thus, developers have a single ground truth they can refer to to determine all the conditions that allow a
certain data type to be used or released by the application, e.g., the authorized users that can access it, and

the purposes and consent conditions for which the data is collected and used.

Finally, applications sharing data with third parties often do so via (i) special application endpoints
that third parties query to “pull” the data from the application, or (ii) “push” the data to third parties
by invoking third-party API in the application code. In Sesame, the latter case can only occur within
privacy-critical regions, making them easy to exhaustively identify, e.g., using a lint. This can help

developers compile lists of third parties with whom they share data and under what conditions.
5.2.2 Consent and Other Policy Preferences

Application developers must create user interfaces that allow users to specify their policy preferences,
these include consent for various non-essential purposes, data sharing with third parties, and other
parameters for Sesame policies that may go beyond mere compliance with privacy laws, e.g., a minimum

k to require before releasing aggregates or a differential privacy budget.

In WebSubmit, students have two such preferences: consenting to releasing data to potential employers

and participating in the grade prediction machine learning experiment. Our user interface allows students

96

to choose these preferences during account creation. We show a screenshot of that interface in Figure 5.3.

We also allow students to update these preferences later through their account profile page.

Applications need to retrieve these preferences from the user interface and store them, e.g., in the
database. Then, they can use these preferences in their Sesame policies by either (i) retrieving them
from storage during the policy check or (ii) retrieving them at policy construction time and storing them
as metadata in the policy type. For example, we look up the consent preference of a user during the

EmployersReleasePolicy check function (Figure 5.2).

Alternatively, some of these preferences can be saved in cookies and controlled using cookie banners,
e.g., for applications with guest users that do not have accounts. Such applications would need to supply

constructors for their Sesame policies that read the policy metadata from the cookies.

Although out of scope for this work, it is important to note that the visual design of user interfaces
themselves plays a role in compliance and how users set their preferences. For example, applications
sometimes use dark patterns [BLN+24] to discourage users from withdrawing consent to certain purposes

and, when extreme, enforcement agencies have found such applications to be incompliant.
5.2.3 Endpoints for Data Access and Deletion

Finally, application developers must create user interfaces that allow users to request access to or
deletion of their data. Developers must also build dedicated application endpoints that these interfaces
invoke. These endpoints issue the corresponding GDPR GET and GDPR FORGET commands to K9db with
the corresponding value of primary key of the relevant DATA_SUBJECT table. The endpoints then retrieve
the results from K9db and render them in a human-readable format. Figure 5.4 shows a screenshot of the
interface that renders student data after they request access. The screenshot is taken from the version of

WebSubmit that we deployed for the Fall of 2024 offering of CS2390.

These endpoints may perform pre- and post-processing needed to correctly handle a user’s access or
deletion request. For example, in WebSubmit, the endpoint first ensures that the user is authenticated
by looking up their API key from the request cookies. Additionally, the endpoint may perform further

formatting of the output to increase its readability, such as visualizing it via graphs or tables.

When the application also uses Sesame, these endpoints are governed by the same exact Sesame

enforcement as any other application endpoints. Specifically, Sesame automatically enforces the policies

97

CSCI 2390: Privacy-Conscious Computer Systems

Course v

Your Data!

User Profile

Discussion Leader

ID Email
9 anonymous_frank@brown.edu

Answers
D Author

26 anonymous_frank@brown.edu

52 anonymous_frank@brown.edu

76 anonymous_frank@brown.edu

Email API Key

Lecture ID
16

Lecture
D
1

1

4

Admin Remote Major Year Gender Consenttorelease Consent to participate

anonymous_frank@brown.edu abcdefH##$%12345 false

Question
D
1

data to emp in ML
false cs 1 M Yes Yes

Answer Submitted
At

The most important objects will be users (professors, students, 2024-09-09

TAs), which should have directly tags (as only e.g. administrators 17:1413

should have the power to delete users and they should do so in

product). Objects related to discussion posts might be

discussion_post and discussion_post_comment, and these should

have by_any tags. There should be a deep edge type from

discussion_post to discussion_post_comment, so that if a post is

deleted so are all of the comments. The edge type in the other

direction should just be shallow, i.e., if a discussion_post_comment

is deleted then the discussion_post remains intact. There should be

deep edge types from users to discussion_post or

discussion_post_comment, so that if a user is deleted then all of

their respective posts and comments are deleted. Note that due to

the cascading nature, this structure is such that if a user is deleted

then all of the comments on all of their discussion posts are also

deleted (as we would want). Assignment-related objects might be

assignment, submission, and grade. There should be a deep

relationship from assignment to submission and submission to

grade so that if an assignment is deleted then the submissions and

grades are deleted. At a higher level, there should be deep

relationships from users to their discussion_post,

discussion_post_comment, assignment, submission, and even

grade object types. This way, when a user is deleted after

graduation, everything related to them is removed. Note that all

grade information should be captured in a transcript object type

which is not deleted even after the student graduates (as the

institution should retain this information forever). The transcript

object type should therefore have a not_deleted tag. This structure

might have to be changed if there is potential for professors to be

replaced mid-semester, as deleting a professor would delete most

of the course. This would be an ugly case to handle in practice.

Im curious about where the deletion specifications actually live. It 2024-09-09

seems like the idea is for basically everything to be in one giant 17:14:13

yaml file, which seems hard to maintain. Im also curious about the

origin of this project, did it stem more from wanting to correct

developer mistakes, save storage space for Facebook, or to comply

with regulations like GDPR?

It seems fair to say that dark patterns indeed make the GDPR less 2024-09-16

effective. As the paper points out, the GDPR aims to make it 19:28:46

Grade

95

98

100

Figure 5.4: WebSubmit provides a user interface for users to issue data access request and to display that
data in a human-readable form.

98

associated with the data returned by K9db. This would detect and disallow the release of data when

KO9db’s access annotations are too lax compared to Sesame’s access control policies.

Endpoints can perform additional sanity checks and forbid deletion when necessary. For example,
students should not be able to delete their data in WebSubmit during the semester (which includes
their homework submissions), because retention of their account and data is required for a legitimate
contractual reason (their enrollment in the course at the university). However, they should be able to
delete their data after a period of time since the completion of the course or if they drop the course.
We resolve this by not allowing students to directly delete their data in WebSubmit. Instead, we run a
background task that automatically issues GDPR FORGET statements for each student one year after the

course is completed, e.g., to ensure enough time has passed to resolve any grading complaints.

In general, applications may use K9db’s GDPR ACCESS and GDPR FORGET primitive commands as a
sub-procedure within larger workflows, e.g., periodic deletion of inactive accounts, or to allow authorized

relatives of users who pass away to delete their accounts (e.g., in a social media application).
5.3 Compliance Without System Support

We now contrast the developer effort required to achieve compliance guarantees using Sesame and
K9db described above with current approaches that do not rely on system-level compliance support. The
current approaches rely on manual, ad hoc application modifications that explicitly or implicitly ensure
the application logic satisfies the requirements of privacy laws. In addition to the initial effort required to
correctly implement this logic, developers need to also maintain and adapt that logic as the application
evolves, either in response to new features or to changes in the application’s privacy policies and terms of

service.

We note that application developers must perform a similar integration effort with this manual
approach to what we described earlier in §5.2. They must create and maintain human-readable privacy
policies. They also need to collect, store, and manage users’ consent and policy preferences, and create
user interfaces and back-end endpoints to facilitate data access and deletion. However, they must do so
without being able to rely on system-level support, e.g., without having the ability to issue GDPR GET and

GDPR FORGET commands to the database.

99

5.3.1 Manually Supporting Access and Deletion Requests

Rather than annotating the database schema and relying on K9db to automatically handle access and
deletion requests, application developers must implement procedures that explicitly (i) identify user data
in the database, (ii) access or delete that data and determine whether to retain shared data, (iii) apply any

necessary anonymization, and (iv) update backups and caches.

Access and Deletion in WebSubmit. WebSubmit has a simple schema that alleviates the need for
many of these steps, and it does not use backups and caches. The application developers must write a
sequence of queries, glued together by application code, that retrieves or deletes user data from the table
users, answers, and discussion_leaders. These require performing two joins between the users

and answers and the users and discussion_leaders tables.

Due to the simplicity of the schema, we estimate that these procedures can be implemented in a
handful of developer hours. However, developers still need to maintain and update them with application
changes. For example, WebSubmit initially did not support assigning students to be discussion leaders.
Developers would have needed to update the access and deletion procedures when introducing support

for discussion leaders.

In contrast, using K9db only required three simple annotations of the database. When introducing
the discussion_leaders feature and table, developers would have only needed to annotate its email
column with OWNED_BY, and K9db would automatically update how it handled access and deletion. We

selected and applied these annotations to WebSubmit in a matter of minutes.

Other Examples. Generalizing to more complex schemas and applications, we note that the complexity
of manual access and deletion implementations scales with the complexity and the number of relevant
ownership relationship (e.g., foreign keys) in the schema, which may scale super-linearly in the number
of tables. Thus the size, complexity, maintenance effort, and vulnerability to implementation error of
manual implementations quickly explodes as the application increases in complexity. For example, §3.7.3
shows that for Shuup, a real e-commerce application, the manual implementation of access and deletion
requests include 4k LoC of Python code (including 1.3k LoC of tests) developed over three years and
with at least two known bugs we found upon deeper inspection. In another data point, it took about a

month and approximately 400 LoC for a student enrolled in CS2390 to implement manual access and

100

deletion routines for SignMeUp [RFE15], a small web application to facilitate students signing up for
TA office hours. In contrast, the number of required K9db annotations often scales linearly with the size
of the schema (e.g., as shown in Figure 3.3), and developers can use it to support schemas of similar

complexity to SignMeUp with a few annotations and developer hours.

Orphaned Data. WebSubmit does not have long transitive ownership chains and does not use the OWNS
annotation. Therefore, it does not directly benefit from K9db ownership-integrity guarantees and does not
use any compliance transactions. However, applications with more complex schemas, including Shuup,
risk creating orphaned, owner-less data via regular application operations. Developers should ensure that
their application logic and queries properly cascade into other tables when appropriate e.g., by explicitly
deleting a group chat after its last user leaves it. On the other hand, K9db automatically protects against
this by detecting and rolling back buggy application operations that cause orphaned data and notifying

developers about them.
5.3.2 Manually Enforcing Application-Level Policies

Today, application developers need to manually ensure that their application logic abides by their
desired privacy policies, such as purpose limitation and access control. Without system support, developers

need to explicitly or implicitly enforce these policies in their logic on a per-endpoint basis.

User Authentication. Every endpoint invocation in WebSubmit authenticates the user via a cookie that
contains the user’s API key. If that cookie is not set or contains an invalid API key, the endpoint redirects

to the login page.

This approach is reasonably effective for simple authentication, especially given that modern web
frameworks (including Rust’s rocket) provide nice abstractions for defining reusable authentication
models. However, it quickly becomes tedious and error-prone for more complex forms of authentication
or other policies. For example, some endpoints in WebSubmit are only available to admins and thus
must further check that the user’s API key corresponds to an admin. Others require that the user satisfy a

certain predicate or possess some capability, e.g., only the author of the answer is allowed to edit.

Cross-Cutting Policies. Some policies, such as respecting purpose limitation and user consent, require
that developers intertwine explicit or implicit policy-related code and checks with application logic. For

example, application developers need to ensure that their database queries perform correct joins and

101

filters by user consent preference when retrieving data to share with potential employers. An application
purpose or functionality may span several endpoints and code path, and developers may need to duplicate
the relevant policy-related code and checks across them. For example, WebSubmit may feed data to the
machine learning grade prediction experiment in two ways. First, it may “push” a single data point (i.e.,
assignment submission and grade) to the model upon data creation. Second, it may also “pull” all relevant
data and retrain the model on demand. The latter is implemented as a dedicated endpoint with a single
purpose. Thus, developers are more likely to include the appropriate policy checks there. The former,
however, is part of the grade submission endpoint, which may be developed at an earlier stage or by a
different developer that may push data to the model via a hook or helper function without giving it much

thought, thus potentially omitting checking user consent and violating the application’s policies.

Another example of this relates to access control of the submitted answer text. WebSubmit shows the
answers to users via several application endpoints that show specific answers or all answers to a specific
question or lecture. It also sends an email receipt containing the answer text to the author, teaching staff,
and discussion leaders. Application developers must ensure that all of these paths only reveal the answer

to authorized users with access to it.

In contrast, Sesame tracks the policies with the data they apply to throughout application code and
checks these policies whenever they flow into an application sink. Thus, Sesame enforces cross-cutting
policies end-to-end, without burdening developers with keeping a mental model of which policies apply

where or with having to manually enforce them throughout their application.

Manual Enforcement in Evolving Applications. Finally, let us look at how application policies and
enforcement can evolve along with the application e.g., when adding new features. Earlier versions
of WebSubmit did not support assigning discussion leaders to a lecture or showing them answers to
questions for that lecture. We added this feature in two stages. First, we added support to track which
students are discussion leaders for a lecture and included them as recipients of the answer submission
receipt email. Later, we added application user interfaces and endpoints to allow discussion leaders to
view answers through the website. Specifically, we added two endpoints: the first shows a list of lectures
the student is assigned to read, and the second shows answers for a specific lecture. The desired flow
is that a student first lists the lectures they lead and then clicks on one of them in the user interface to

retrieve its answers. That flow implicitly ensures that the student is a discussion leader and thus allowed

102

1 #[rocket::get("/lectures"”, auth="student")] 1 #[rocket::get("/<lec_id>", auth="student")]

2 pub fn list_lectures_leader(2 pub fn show_answers_leader(
3 student: User, 3 lec_id: u32,
4) -> rocket::HTMLTemplate { 4 student: User,
5 let lectures = DB::query(5) -> rocket::HTMLTemplate {
6 "SELECT lecs.id, lecs.title 6
7 FROM lectures as lecs 7 // Get all lectures the authenticated
8 JOIN discussion_leaders as dls 8 // user is assigned to lead.
9 ON dls.lecture_id = lecs.id 9 let lectures = DB::query(
10 WHERE dls.email = {}", 10 "SELECT lecture_id
11 student.email 11 FROM discussion_leaders
12); 12 WHERE email = {}",
13 rocket: :render(13 student.email
14 "list_lectures.html", 14);
15 lectures 15
16) 16 // Check that requested lecture is one
17 } 17 // of the ones assigned to the user.
18 #[rocket::get("/<lec_id>", auth="student")] 18 if !lectures.contains(lec_id) {
19 pub fn show_answers_leader_buggy(19 return rocket::error (UNAUTHORIZED) ;
20 lec_id: u32, 20}
21 student: User, 21
22) -> rocket::HTMLTemplate { 22 // Carry out the functionality.
23 let answers = DB::query(23 let answers = DB::query(
24 "SELECT answer 24 "SELECT answer
25 FROM answers 25 FROM answers
26 WHERE lecture_id = {}", 26 WHERE lecture_id = {}",
27 lecture_id 27 lecture_id
28) 28)
29 rocket: :render(29
30 "list_answers.html", 30 rocket::render(
31 answers 31 "list_answers.html",
32) 32 answers
33 } 33)

34

35}

(a) The first endpoint lists the lectures a student is
assigned to lead. The second endpoint lists all answers
to questions for a given lecture. The second endpoint ~ (b) A correct endpoint implementation for showing
implicitly assumes users only invoke it on one of all answers to questions for a given lecture to a stu-
the lectures returned by the first endpoint. It merely ~ dent that is assigned to lead that lecture. The end-
checks that the authenticated user is a valid student, ~point first explicitly checks that the student is a dis-

but not that they are a discussion leader for the given ~ cussion leader, then retrieves the answers from the
lecture. database and renders them via HTML.

Figure 5.5: Two ways of adding support for retrieving answers for discussion leaders to WebSubmit.
a shows a buggy implementation that omits checking that the user is indeed a discussion leader and b
shows a correct implementation.

to access the answers. Figure 5.5a shows this implementation. However, note that this approach is buggy.
Users may manually invoke the second endpoint and supply it with a lecture ID they are not assigned
to lead, in which case they would be able to erroneously see the answers for it. To protect against this,
simply authenticating the user is not sufficient, and the endpoint code should explicitly ensure that the

user is a discussion leader for the given lecture, as shown in Figure 5.5b.

103

In contrast, consider how we would add such a feature in the Sesame-protected version of WebSubmit.
First, we update the access control policy assigned to the answer column to also allow us to reveal the
answer to the relevant discussion leaders. Second, we would implement the two endpoints, as shown in
Figure 5.5a, without the need to add explicit checks for whether the student is a discussion leader, since
Sesame checks that automatically. Thus, Sesame reduces the risk that application developers may omit
needed checks or cause inadvertant policy violations when adding new features or modifying existing

ones.

Sesame Policy Burden vs. Manual Checks. Comparing the Seasme-protected WebSubmit to a correct
Sesame-less WebSubmit where policies are enforced manually, it turns out that all the functionality
we implemented within the check functions of Sesame policies appears in some similar form in the
Sesame-less WebSubmit. For example, consider the AnswerAccessControl policy shown in Figure 4.3.
The policy contains three stipulations, the latest of which checks that the target user is assigned as the
discussion leader to the corresponding lecture. In our implementation, we notice that this implementation
is identical to the manual version of this shown in Figure 5.5b (lines 9-20). The other two stipulations for
checking that the target user is the author or part of the teaching staff also appear in similar forms in other

endpoints.

Another example is EmployersReleasePolicy (Figure 5.2) whose check function contains a query
to check the consent preference of the corresponding user. A variation of this query appears in the
manually enforced version of WebSubmit in the employers release endpoint. Specifically, it shows up as

part of a large join query that retrieves the data and filters by consent preference in one go.

Sesame declares each of these policies once in a central policy repository and then enforces them
across the entire application code. The manual approach scatters this logic through out application
endpoints, with some identical or similar checks duplicated across several endpoints. Thus, using Sesame
reduces developer effort in both (i) implementing policy-related logic, and (ii) tracking code locations

where this logic must be applied.

104

CHAPTER 6

Discussion and Future Work

This chapter discusses ideas for building on K9db and Sesame in three future directions:

1. We discuss how adaptable the ideas and design of K9db and Sesame are to other types of commonly

used databases and programming languages (§6.1).

2. We look at direct extensions of K9db and Sesame that aim to further improve ergonomics and

reduce application developer effort (§6.2).

3. We provide a brief discussion of some of the ways in which the insights learned from these systems

can enhance or complement other privacy notions that go beyond consent and control (§6.3).
6.1 Systems for Compliance with Other Databases and Programming Languages

K9db and Sesame target SQL-databases and web applications built in the Rust programming languages,
respectively. There are good reasons for this: SQL schemas have a relational structure that simplifies
the annotations needed to express ownership semantics, and Rust provides encapsulation and memory
safety guarantees that make Sesame’s PCONs and its leakage-freedom static analysis feasible. Now, we
consider whether systems with comparable guarantees, performance, and ergonomics can be built for

other databases and languages.
Storage Compliance for non-SQL Databases

DELF [CDN+20] shows that it is possible to specify and enforce deletion semantics over graph
database, like Facebook’s TAO. Although DELF does not provide a complete compliance solution, as it
lacks support for data access, encryption at rest, and enforcing the integrity of data ownership at runtime

(e.g., no compliance transactions), DELF’s existence suggests that the design ideas of K9db can be applied

105

to graph databases with comparably low performance overheads and with low application developer

specification and annotation effort.

NoSQL Databases. NoSQL databases lack the schematic structure of SQL to specify and reason about
ownership. This makes it more challenging for developers to express their ownership semantics to the
database and also complicates enforcing these semantics by the database. We believe this can be address
in two ways. First, developers can implement their ownership semantics using custom program logic e.g.,
such as deletion hooks that can determine which documents to cascade to dynamically. Second, systems

can leverage the structure imposed by object relational mapping (ORMs) that sit on top of the database.

We investigated both approaches with several students in their CS2390 course projects, our graduate
seminar on privacy-conscious systems. We found that the two approaches offered interesting trade-offs.
The first approach yielded good performance and can express a wide range of semantics, even in cases
where the data has very little structure. However, it imposed significantly more burden on application
developers compared to K9db, as they had to implement a handful of hooks, each containing tens of
lines of code, for small-to-medium sized applications. The second approach resulted in application
performance and developer burden in line with K9db but for simpler applications, and we strongly suspect
that with further engineering, it can provide guarantees and features comparable to K9db. However, it

does require application developers to use a custom ORM.

Applications with Heterogenous Storage. DELF handles deleting user data scattered across multiple
storage systems. DELF requires application developers to declare the schema of data stored in each of
these systems, as well as the logical relationship between them, in a storage-agnostic domain-specific

language.

An alternative design is to create a system with a universal API, through which applications insert,
update, and delete data in any of the underlying storage systems. Applications invoke this API with their
data and update, the target storage system, and a list of zero or more owners. The system maintains the
required metadata that maps between users and the data they own across all the storage systems. The
system can use this metadata to delete or retrieve that data when a user requests deletion or access. An
advantage of this design is that it does not require any modeling or specification effort by the application

developers.

106

Students in CS2390 investigated this design and built a small prototype compatible with MongoDB,
SQLite, and Redis. This prototype exhibited good performance with low overheads resulting from
tracking the required metadata. However, it also showed that the design is vulnerable to application bugs

e.g., when application edge cases result in an incorrect list of owners for a piece of data.
Privacy Enforcement with Other Web Frameworks

Our Sesame prototype is closely tied to the Rocket web framework [Ben24], but it can be extended to
support other Rust-based web frameworks by implementing shims over them. These shims are responsible
for (i) invoking policy constructors when the application accesses user-provided data in HTTP requests,
and (i) invoking policy checks prior to externalizing PCONs via HTTP responses. We investigated adding
one such shim to support Axum [LP25], another recent and popular Rust web framework, and found that

doing so seems feasible with more engineering effort.
Privacy Enforcement in Other Programming Languages

Overall, Sesame relies on Rust in three distinct ways: (i) The encapsulation of data and policy within
PCoNs, (ii) The analysis and enforcement of the three types of privacy regions, and (iii) The ergonomics

of restructuring applications into glue code and privacy regions.

Other languages may be able to support what Sesame needs, though perhaps with additional developer

effort or possible loss of precision.

Encapsulation and PCONs. PCONs are central to Sesame’s design. They ensure that data and policies
remain attached to each other throughout application execution and force application developers to use
privacy regions to interact with the underlying data. Because of Rust’s encapsulation guarantees, it nearly
suffices to define the data and policy members as private within Sesame’s PCON type definition. However,
because unsafe code is prevalent in the Rust ecosystem, which is able to violate encapsulation and access

private members of structs, we augment encapsulation with a pointer obfuscation protection mechanism

(§4.4).

Several languages thought to provide strong encapsulation guarantees in reality have escape hatches
(similar to unsafe in Rust) that allow application code to access private members. For example, applica-
tions can access private members in Java and C# using reflection. They can also access private members

in C++ in a variety of ways, including casting and pointer arithmetic. Thus, a PCON-like implementation

107

in these languages must also rely on pointer obfuscation (or similar techniques).

Several popular programming languages do not provide direct support for private members in a
type, such as Python and Javascript. We believe the best recourse to implement PCON-like objects in
these languages is a pointer-like mechanism to hide the data. It may be possible to use closures (which
provide encapsulation) to disallow external access to the data in Javascript. Alternatively, a Python-based
Sesame-like system could store all protected data and policies in some map or vector structure within it,

and merely store handles (e.g., obfuscated indices or keys) within PCONs.

Analysis of Privacy Regions. Sesame relies on several properties of safe code in Rust to enable its anal-
ysis of privacy regions. First, it relies on lifetime information to resolve aliases and compute information
flows via Flowistry [CPA+22]. Second, it combines information flows with a custom inter-procedural
analysis and compiler-provided information (e.g., monomorphization, identifying implementors of a trait
within scope) to resolve dynamic dispatch. This is further aided by the fact that a large chunk (but not
all) of dynamic dispatch in Rust is carried out through trait objects or typed closures, as opposed to free
and type-less function pointers. Overall, this enables Sesame (specifically, SCRUTINIZER) to construct a
monomorphized call graph (MCG) that represents a sound and reasonably accurate approximation of all

functions invoked in a privacy region, directly or indirectly via other dependencies.

Sesame uses this MCG to enable two types of privacy regions. First, verified regions (VRs) simply
check that the MCG does not contain flows between sensitive information and constructs with observable
side effects. Second, critical regions (CRs) hash this MCG and use that as the basis for code signing,
which ensures that any future changes to the CR or its dependencies cause the hashes to diverge and thus

the signature to become invalid.

JVM-based languages such as Java and Scala may be closest to Rust with respect to constructing
and analyzing the MCG. First, they are statically typed and mostly realize dynamic dispatch via class-
based inheritance, rather than unrestricted function pointers which, even in Rust, is challenging for
SCRUTINIZER to resolve accurately. Second, they do not expose raw pointers and pointer arithmetic
to applications, akin to how Rust aims to hide such unsafe operations behind safe interfaces. Finally,
it is possible to detect or enumerate operations with effects in these languages since interactions with
hardware resources and I/O must pass through specific JVM or native interfaces and are thus easy to

detect. These languages allow runtime reflection and invocations of native code, but code using these

108

features may be detected and conservatively rejected without further analysis. This analysis may also be

possible in other languages that also exhibit the above properties, such as C# or Haskell.

The construction or the analysis of the MCG may be more difficult in other languages that do not
meet some of the above properties. It may be feasible to construct a sound MCG in applications that
exclusively use modern C++, where pointer arithmetic is rare, and dynamic dispatch occurs mostly via
inheritance. However, analyzing such a C++ MCG for side effects is tricky, as side effects themselves are
harder to identify, unlike in Rust. For example, all I/O interactions (e.g., network, files) in Rust must go
through clearly delineated unsafe intrinsics or native functions, and thus SCRUTINIZER can look for and
reject any sensitive flows into such functions. Furthermore, mutations of captured and global variables are
also easy to detect. In C++, this delineation is less clear, although detecting certain calls to the standard
library or syscalls could serve as proxy for detecting I/O and effects. Additionally, constructing the MCG
in dynamic languages like Python or Javascript is much harder, especially with soundness and good
accuracy. For example, related work that tried to perform somewhat similar static analysis for privacy in

Javascript is neither sound nor complete [FBS+23].

However, there are alternative mechanisms for privacy regions that may be more suitable for such
languages. For example, sandboxing via WASM might be ideal practical as the primary mechanism
(rather than a fallback) for leakage-free regions in Javascript. The overhead of sandboxing in Sesame
comes from having to change the memory layout of arguments to the sandbox, and from the increased
overhead of using WASM compared to un-instrumented Rust code. Both of these overheads are relatively
lower for Javascript: WASM often can make Javascript code run faster. Similarly, it may be possible to
achieve a similar effect in Python via a modified runtime. The runtime can detect when it is executes
a region (e.g., by setting a flag), and then error out if the interpreter attempts to execute native-facing
APIs or modify global memory. Although this would likely require significant engineering effort, it
may result in a lighter-weight solution with better performance than taint-tracking approaches, such
as Resin [YWZ+09] and Riverbed [WKM19], which modify the Python runtime to track and combine

policies with every operation.

Ergonomics. Rust applications often exhibit two properties that simplify porting existing applications
to Sesame. First, they often rely on type inference and thus mostly write out explicit types in function

signatures. This makes it easier to update an unprotected variable or piece of data in the existing

109

application to a PCON. Second, idiomatic Rust encourages chain closures, e.g., in iterator chains or with
monads such as Option and Result. Thus, this makes it easier to upgrade such code to a privacy region,
which is also a closure. Although these properties make porting applications to Sesame easier, we suspect

that they do not play as much of a role in developing applications using Sesame from scratch.

Finally, Rust provides an ecosystem that allows plugging in various static analyses via compiler
plugins and lints. It also provides derive macros and build script support that simplify tasks like generating
FFI-bindings (e.g., for sandboxed regions). Achieving similar ergonomics in other languages without

such an ecosystem remains possible but requires more engineering effort.
6.2 Extensions to K9db and Sesame

We discuss three ongoing extensions that aim to improve ergonomics and reduce application developer
effort in common application scenarios. The first extension, SesameBun, seamlessly extends the scope
of Sesame’s enforcement to complex database queries by tracking Sesame policies within the database.
The second, SesaSpec, aims to help applications combine K9db and Sesame through a simple unified
specification language. Finally, the last extension, Tahini, aims to provide end-to-end enforcement

guarantees for applications with remote and microservices.
6.2.1 Tracking Sesame policies in the database using SesameBun

Sesame’s enforcement rests on its policy containers (PCONs). Rust’s encapsulation guarantees ensure
that application code cannot directly access or externalize the data within PCONs. Instead, applications
must use privacy regions when manipulating this data, and may only externalize it via Sesame-enabled
sinks or a critical region. Thus, Sesame ensures that the externalization of data within a PCON respects

its associated policy, assuming proper review of any relevant critical region.

This leads to the question of how the data is associated with a policy object and stored in PCONs to
begin with. Generally, application developers are responsible for constructing the desired policy objects
and placing them along input data in PCONs at custom application sources, such as reading from a file.

Furthermore, Sesame provides support for two common sources: HTTP requests and the database.

Recall the access control policy Figure 4.3 for homework answers in WebSubmit: Answers can only
be accessed by their authors, the teaching staff, or the students assigned to lead the discussion in the

corresponding lecture. After implementing this policy as a Rust struct, application developers must

110

)

00NN Nk W=

P
N = O O

CREATE VIEW aggregate AS | CREATE VIEW aggregate_modified AS

SELECT users.is_remote, > SELECT users.is_remote,
AVG(answers.grade) as avg 3 AVG(answers.grade) as avg,

FROM users JOIN answers 4 COUNT(DISTINCT answers.author) as c

ON users.email = answers.author 5 FROM users JOIN answers

GROUP BY users.is_remote; 6 ON users.email = answers.author

7 GROUP BY users.is_remote;

(a) The unmodified aggregate query as written in

WebSubmit prior to porting to Sesame. It computes (b) The modified query after porting WebSubmit
the average grade over all submissions grouped by to Sesame. This query additionally tracks the num-
author remote enrollment status. ber of distinct users with grades in each enrollment

status. The MinK Sesame policy uses this count to
determine whether to allow releasing the aggregate
value.

Figure 6.1: The queries for computing average grade per student enrollment status in WebSubmit. a
shows the unmodified query in the original WebSubmit implementation, and b shows the modified query
after porting WebSubmit to Sesame.

#[db_policy(table = "aggregate_modified", columns = ["avg"])]
struct MinK { k: u64 }
impl Policy for MinK {
fn check(&self, context: ...) -> bool {
self.k >= MIN_K
}
}
impl DBPolicy for MinK {
fn from_row(row: &Row) {
MinK { k: row.get("c") }
}
}

Figure 6.2: The MinK policy assumes the count c computed by aggregate_modified (Figure 6.1b) is
correct and confirms it is larger than the minimum allowed K for release.

perform two steps to associate that struct with the answers in the database, as shown earlier in Figure 4.3:
(i) they must use the #[db_policy(...)] annotation to declare which columns in the database this
policy applies to, and (ii) they must implement the from_row policy constructor that creates a policy
object given a row in the database. Sesame provides the constructor with the entire row rather than merely
the cell to which the policy applies. This is important as policies often depend on metadata adjacent
to the data they govern. For example, the WebSubmit access control policy depends on the adjacent
author and lecture_id columns. This approach works well for simple database queries, such as point
lookups or scans. However, it runs into issues when handling complex database queries that project away

important columns or aggregates over multiple rows.

Consider how WebSubmit computes the average grade by the remote enrollment status of students.

111

Sesame : | Database
I . I
DB | I _ =| | Storage |
c PCon Adapter , . 1| 2 Engine ,
S ml |1 £5 | [|
@ S |] &5 — [
S +—| »s|je—— 23 [&— ;
[ezl o — |
2 53 || | 5d | [E :
< o g | . % — |
. 0 .
Ol ! |
................. f V= . ==

Figure 6.3: How Sesame interfaces with a “black-box” SQL database. Here the application issues a query
(e.g., an aggregation). The database reads relevant individual rows from the underlying storage engine,
and then perform the query (e.g., aggregation) on them, returning the result to Sesame. Sesame database
adapter creates policy objects (shown as a blue scroll) for the result using developer-provided policy
constructors. The query results must contain all the needed information to construct the policies, which
may require manual query rewriting by application developers.

Sesame . . Database !
1 1 :
. . = = [
DB 1 1| = %. =|| Storage |-
Adapter |- -l © Engine |[!
12D 1| £ |[= = :
ST 6 BT B
ol 1] 85 | t— Policy — :
N| e—— =~ 3
o5 | i |l 23 Factory ;
HEL S EI=
o g I I g = = |
= | € :
. . |
................. J e U —

Figure 6.4: Overview of SesameBun’s design. SesameBun constructs Sesame policy objects within
the database as soon as it reads individual rows from the underlying storage engine (e.g., aggregation
inputs). SesameBun modifies query planning and execution such that it tracks and combines the policy
objects associated (e.g., aggregates policies along with data). Now the database returns the query results
associated with its policies. Application developers no longer need to rewrite their queries or provide
policy database constructors. New and modified components are shown in green and orange, respectively.

Figure 6.1a shows the query that computes this aggregate prior to porting WebSubmit to Sesame. This
version of the query contains a subtle privacy threat that Sesame must address. Imagine a case where
only one of the students in the class is remote: WebSubmit should not reveal the remote average grade

in that case, as it corresponds to the grade of that remote student. Encoding such a policy in Sesame

112

requires tracking the answers. author values in each aggregation group to ensure that there are more
than K students in each aggregate value. However, the query projects away that information and only
retains users.is_remote and the average grade. Thus, the Sesame database adapter and the policy’s
from_row constructor do not have enough information to construct correct policy objects for this query.
This is a consequence of viewing the database and its queries as a “black-box™, as shown in Figure 6.3.
Sesame interfaces with the database via the adapter, which only has access to the final query output (at
which point relevant metadata may be lost), and not intermediate records used during query execution

within the database (where the relevant metadata still exist).

To overcome this, we modified the query while porting WebSubmit to Sesame, so that it tracks the
distinct count of students in each aggregation group (Figure 6.1b). Then, we attach a MinK policy to
the output of that query and retrieve the count in its from_db constructor (Figure 6.2). This correctly
enforces the desired policy. However, it suffers two drawbacks: (i) it requires application modification
and thus increases developer effort, and (ii) it makes the policy dependent on the query (specifically, the
count), and thus makes the query part of the trusted policy code. For example, we could have incorrectly
modified the query to compute the count without DISTINCT, which would have changed the semantics of
the policy to require a minimum of K records from any number of users, rather than records from at least

k distinct users.

To address these drawbacks, we now sketch SesameBun, a database extension of Sesame that tracks
Sesame policies within the database (Figure 6.4), such as when handling aggregates. In this design, a
SesameBun-compatible database creates policy objects for the raw records it reads from the underlying
storage engine, prior to any aggregation, projection, or other lossy transformations. It then tracks and
combines these policies as appropriate as it performs operations on these records. Finally, it outputs both
the query result and its associated policies, which Sesame’s database adapter deserializes into PCONSs,

without the need for any policy constructors.
Preliminary Prototype

We implemented a preliminary prototype of SesameBun for K9db. Our prototype extends K9db with

the following components:

1. Anew “SET POLICY <policy_name> FOR <table_name>.<column_name>" SQL command.

Applications issue this command to the database at schema creation time to indicate that the

113

provided column is governed by the given policy, identified by name. We implemented a C++

version of each of the policies used in WebSubmit and linked them with K9db.

2. A policy factory that (i) maintains a mapping between columns and their associated policies, and
(ii) constructs and attaches policy objects to cells in records K9db reads from its underlying storage

engine.

3. A modified query execution and dataflow engine that preserves policies associated with its input
records. Specifically, it computes the conjunction of the policies associated with cells that are

aggregated or joined, and attaches that conjunction to the result.
4. A policy serializer that transmits query results along with their policies via the MySQL protocol.

We chose to implement this prototype on top of K9db, rather than, say, MySQL, for two reasons. First,
as discussed in §5, applications can use Sesame with K9db to get privacy compliance guarantees that
cover both application logic and storage and SAR requirements. A tighter integration between Sesame
and K9db facilitates their combined use. Second, K9db tracks the owners of each piece of data in order to
ensure correct compliance with SARs. This gives us an opportunity to associate Sesame policies with

data based on its owners in the future, in addition to schema- or column-based associations.

One possible pitfall in this proposal is that the database must now serialize policy objects along with
query results. These policy objects are associated with specific cells in the query result. Thus, the database
may transmit as many policy objects as cells in the result set. If the policy objects contain significant
metadata, such as an access control list, this may result in a significant increase in transmitted bandwidth,
and thus performance overhead. To avoid this, we implemented an optimization in our prototype that
computes the column-wise conjunction of all policies in the result set prior to transmitting the output.
This results in having one policy object per column, as opposed to per cell. It is also sound, as that policy

is as strong as all the cell-level policies combined.
Preliminary Results

We can judge the effectiveness of SesameBun’s approach and design based on the following criteria.
First, using SesameBun as a back-end should not result in any enforcement degradation compared to
the current black-box approach to databases in Sesame. Second, SesameBun should simplify policy

construction and enforcement with complex database queries and result in fewer query modifications

114

compared to the current Sesame approach. Finally, SesameBun should provide end-to-end application

performance comparable to that of black-box approaches.

Our preliminary evaluation of the SesameBun K9db prototype shows promising results. We used
K9db’s SesameBun extension as the back-end database for our Sesame port of WebSubmit (§4.7). We
found that: (i) we were able to successfully enforce all of WebSubmit’s policies using the SesameBun
backend, (ii) SesameBun alleviated the need to manually modify aggregation queries for policy construc-
tion, and (iii) SesameBun had comparable (and in certain cases better) performance to non-SesameBun
baseline. These are promising results that provide a good preliminary indication that this approach is
viable and may result in simpler integration between Sesame and the database and thus a lower application

developer effort.
Relation To Related Work

Policy enforcement systems with goals comparable to Sesame face similar issues when it comes to
application queries. For example, Resin [YWZ+09] has a similar database adapter (i.e., a “filter” object)
that constructs policies for cells in the results of the database query. One difference is that Resin persists
policies along with the data when it is written to the database, and then reloads that policy when data is
read. Sesame does not persist the policy, and instead reconstructs it from scratch e.g., using metadata from
adjacent columns. However, both approaches face similar limitations when dealing with aggregates, such
as the one shown in Figure 6.1. Cocoon [LTB+24] relies on application developers manually wrapping
data from sources, including the database, in Cocoon’s Secret type. This manual approach is in line with
many other IFC systems [MLO0O0O; RPB+09]. The overall design and goals of SesameBun could benefit
these other systems, including Resin and Cocoon, by associating and tracking their policies or labels

during query execution within the database.
6.2.2 SesaSpec: Common Specification Language for K9db and Sesame

In Sesame, application developers implement their policies as Rust types that their application and
Sesame can use e.g., with PCONs. With SesameBun, they must also inform K9db about these policies.
Specifically, developers must specify the columns the policies are associated, how to construct instances

of them for database rows, and their join functions, which are responsible for policy conjunction.

Furthermore, K9db itself requires schema annotations that application developers must provide. These

annotations express data ownership relationships in the database and govern how K9db handles GDPR

115

access and deletion requests. Although K9db’s schema annotations and Sesame’s policies relate to
different privacy and compliance requirements, they sometimes partially overlap. First, K9db annotations
identify the owners of a piece of data, and the Sesame policies attached to that data are often configured
by its owners’ preferences, e.g., whether the author of an answer consents to releasing their answer grades
to potential employers. Second, schema annotations and Sesame policies often express overlapping but

distinct notions of “access”.

As aresult, there is often overlap between the specifications that application developers must provide
to K9db and Sesame, which take the form of schema annotations and Rust policy definitions, respectively.
A unified specification language could govern both K9db and Sesame together, with the goal of reducing
specification duplication and effort, and creating additional sanity checks that can help application
developers ensure their specifications indeed encode their desired policies. We sketch the design of one

such language, SesaSpec, below.
The SesaSpec Unified Specification Language

SesaSpec is a JSON-like schema languages that defines (i) the SQL schema including tables and
columns, (ii) the GDPR ownership and access relationships between records in that schema, and (iii) the
associations between columns and policies that govern how their contents may be used by the application.

We show an example of this language applied to WebSubmit in Figure 6.5.

Policy Templates. Built-in policy templates can simplify policy specification by providing application
developers with configurable and reusable templates that correspond to common application policies.
For example, AccessControl, Aggregate, and Consent are all policy templates in the above exam-
ple. Application developers configure them via custom fields in SesaSpec, such as the allow list or
purpose. Importantly, the values of these fields can be expressions that refer to other adjacent cells
(e.g.,$self.author), database queries (e.g., all admins), or fields associated with their data owners

(e.g.,$owner.consent_employers).

Custom Policies. Applications may contain a number of custom policies that cannot be expressed using
built-in policy templates. Application developers can express such policies as Rust types as in regular
Sesame. We envision providing Rust macros that allow developers to register these custom policies

so that they can refer to them by name in SesaSpec. We also envision automatically compiling and

116

)

38

"table": "users", "data subject": true, "columns": [

{ "name": "email", "ty": "text", "primary key": true },
{ "name": "apikey", "ty"; "text", "unique": true, "policy": { "name": "CookieOnly" } 1},
{ "name": "is_admin", "ty": "int" },
{ "name": "consent_employers", "ty": "int" },
{ "name": "consent_ml", "ty": "int" },
{ "name": "is_remote", "ty": "int" },
{ "name": "gender", "ty": "text" }
1
"table": "discussion_leaders", "columns": [
{ "name": "id", "ty": "int", "primary key": true },
"name": "lecture_id", "ty": "int", "foreign key": "lectures.id" },
"name": "email", "ty": "text", "owned by": "users.email" }
1
"table": "answers", "columns": [
{ "name": "id", "ty": "int", "primary key": true },
{ "name": "lecture_id", "ty": "int", "foreign key": "lectures.id" },
{ "name": "question_id", "ty": "int", "foreign key": "questions.id" 1},
{ "name": "author", "ty": "text", "owned by": "users.email" 1},
{ "name": "answer", "ty": "text", "policy": {
"name": "AccessControl",

"allow": [$self.author, ${SELECT email FROM users WHERE is_admin = 1},
${SELECT email FROM discussion_leaders WHERE lecture_id = $self.lecture_id}]

}
1,
"name": "grade", "ty": "int", "policy": {
"or": [
{ "name": "AccessControl",
"allow": [$self.author, ${SELECT email FROM users WHERE is_admin = 1}] },
{ "name": "Aggregate", "count": $self.author, "min_k": 10 },
{ "name": "Consent", "purpose": "emp", "field": $owner.consent_employers },
{ "name": "Consent", "purpose": "ml", "field": $owner.consent_ml }
]
}
}

]

Figure 6.5: An example specification for WebSubmit written in SesaSpec. The specification defines the
database schema, its ownership semantics (for handling GDPR requests), and policy association (for
application-level policy enforcement).

packaging these policies into a shared library that can be dynamically loaded and used by K9db, similar
to a user defined function (UDF) in traditional databases. The CookieOnly policy, which only allows

externalizing a user’s apikey via a cookie to that user, is one example of such custom policies.

Sanity Checks. Future tooling on top of SesaSpec can help application developers perform sanity
checks and identify specification bugs, by checking that the application-level and GDPR-level access
policies are consistent. Developers specify the former using the SesaSpec’s AccessControl policy

template, while K9db’s data ownership graph (DOG) captures the latter. These two concepts are different,

117

but they overlap: In general, a user may be allowed to access some data via the application interfaces
without having GDPR access rights to it. For example, users of a social media application can see
public comments on public posts via the application but do not get a copy of all such comments (of
which there could be millions) when they request GDPR access to their data. However, AccessControl
policies should not forbid access to data that a user has GDPR access to. Such contradictions imply an

inconsistency and thus an error in the specification.

Human-readable Privacy Policies. Applications need to provide end-users with human-readable
privacy policies to comply with the GDPR and similar laws. At a minimum, these documents describe
the types of data that the application collects, the legal basis for this collection (e.g., user consent), the
purposes for which it is used and any third parties with whom it may be shared. Note that these concepts
overlap with common policies templates e.g., for consent, purpose limitations, or third-party sharing.
We envision that SesaSpec, which associates these templates with different columns and data types, can
be used as a basis for generating such human-readable documents. For example, synthesis or LLM
based techniques could generate such documents in a semi-automatic way from SesaSpec. Alternative
approaches could check whether these documents are consistent with SesaSpec, e.g., by generating

examples of good and bad flows and comparing them with each.
Prototype and Preliminary Results

We implemented an initial prototype of SesaSpec capable of supporting the features, keywords, and
policies shown in Figure 6.5. The prototype takes as input developer-provided specifications written in
SesaSpec’s format. The prototype automatically generates the corresponding SQL schema along with its
K9db annotations and uses it to setup K9db. It also sends SET POLICY commands to our SesameBun
prototype to configure it with the policy associations described in the specification. The prototype
provides the three policy templates shown in the example, but does not have streamlined support for
custom policies, such as CookieOnly. Instead, we had to manually implement and link a C++ version of
CookieOnly to a fork of K9db and SesameBun. We plan to add better support for custom policies with

further engineering in the future.

Using this prototype, we were able to enforce all WebSubmit policies and support SARs for it. Our
preliminary results show that using SesaSpec results in a 2.6 x reduction in overall specification size,

including SQL schema, K9db annotations, and Sesame policies code and constructors. We further observe

118

that SesaSpec also reduces the complexity of the specification, as it results in a 10 x reduction in the
portion of the specification written in Rust: the regular Sesame port of WebSubmit included 373 LoC of
trusted Rust policy code, while we only needed 33 LoC of Rust code for custom policies using SesaSpec.
This provides a good first indication that SesaSpec may result in simpler specifications that are easier to

write and reason about.
6.2.3 Extending Sesame to Distributed and Microservices Applications with Tahini

Web applications often invoke remote services, which may be run by the same organization or by
untrusted third parties. Either type of remote invocation requires externalizing data outside the application
process boundary e.g., by invoking a custom remote procedure call (RPC). As a result, for Sesame-
protected data, such invocations must be wrapped in a reviewed privacy critical region. This guarantees
that application developers cannot inadvertently call remote services on sensitive data, since Sesame
checks the associated policies, and authorized reviews must deem the invocation desirable and sign its
code. However, it also means that Sesame’s enforcement guarantees are conditional on the remote service
behaving within the expectations of the policy check and human review, e.g., that a remote plagiarism
detection service does not publicly reveal students’ homework answers. Even when the remote service is
trusted, this is vulnerable to human error, especially when the remote service evolves, e.g., by adding new

behavior.
Tahini

We sketch a possible extension of Sesame, Tahini, with support for such distributed settings. Tahini
aims to provide end-to-end enforcement guarantees when both the application and remote service use
Sesame properly. For tightly integrated micro-services developed by the same company, Tahini adds a
built-in Sesame-enabled RPC library that (i) serializes the policies associated with the data prior to RPC
invocation, and (ii) automatically deserializes the policies and attaches them to the corresponding data
via PCons on the remote service side. Crucially, such an policied-RPC abstraction must be transparent to

applications to ensure good ergonomics.

For remote services provided by untrusted third parties, this is a little more complicated. First, third
parties may be deploying Sesame incorrectly, e.g., they may be too lax in how they review the critical
regions. Second, they may not be able to encode or enforce the policies associated with the data by the

application (and vice versa). For example, when these policies, and in particular their check functions,

119

Company-managed services

HTTP server DB servers
=
b |, < RR

requests
r X
/ LLM servers.

(core business)

'{_"-——_
T
[[(5]
Client l=k 1=C _:g
Advertisement
service
Legend DB policies
Policy o

transformations Webserver policies

o] Core company policies Ad company policies

=]

External remote service

Figure 6.6: Example LLM chatbot application that consists of several micro-services and uses Tahini for
end-to-end policy enforcement. Data is governed by shared core company policies through out company
managed services. Furthermore, the HTTP and DB servers impose additional policies on the data (e.g.,
whether the user allows persisting message history in the database). The ad company is governed by an
independent set of policies. Tahini allows the application to seamlessly invoke these micro-services and
perform the required policy transformations, provided their conditions are met.

refer to application-specific concepts such as by making a database query.

For such scenarios, Tahini adds support for policy transformations. These transformations seamlessly
replace the Sesame policy attached to some data with a stronger but simpler policy that does not refer
to any internal application concepts and thus is compatible with remote services. Alternatively, these
transformations can allow weakening of the policy provided some contextual conditions are met, e.g.,
a specific service is being invoked, or that the data has been transformed in some predefined way, e.g.,

hashed, encrypted, or anonymized.

Remote attestation techniques, such as Intel TDX [Int23], may be useful to attest to the correct use
and configuration of Tahini by the remote service. Such attestation techniques may to be extended to
reason or show information about relevant critical regions, while keeping the rest of the service private

e.g., when the code is proprietary.

120

Preliminary Prototype

We implemented an early-stage prototype of Tahini that seamlessly supports invoking RPCs on
PCoNs along with a prototype implementation of policy transformations. The policy developers express
what transformations over that policy are allowed and under what conditions by implementing certain

Tahini-provided traits for that policy.

We applied our Tahini prototype to a simple LLM chatbot application that we built for evaluation.
Figure 6.6 shows an overview of the application design. The application consists of an HTTP, database,
and LLM servers, each implemented as a standalone micro-service. It also invokes remote services for
advertisement that are managed by an independent untrusted entity. This provides an early indication that

this approach is feasible.
6.3 Complementary Notions of Privacy

We discussed two other complementary notions of privacy in §1.1.1: cryptographic secure computation
and statistical privacy. These notions complement the focus of this dissertation on respecting end-user
consent and control over their data. We now discuss some future directions for combining these techniques
to obtain stronger privacy guarantees inspired by our earlier work on building and deploying secure

computation in practice [DIL+19; LID+18].

Outsourced Secure Computation. Secure computation, such as secure multiparty computation [BGW8S;
Sha79; Yao86] or holomorphic encryption [Gen(9], allows mutually distrusting parties to jointly compute
a function over sensitive input while keeping these inputs private. A common deployment scenario for
these technologies is the outsourced model, where a large number of data contributors provide secret
shares or homomorphic ciphers of their data to a small number of compute parties. The compute parties
then perform the desired computations over the secret data, while only revealing the final output. This
reduces communication and computation overhead compared to a straw-man solution in which data
contributors perform the computation. It also allows for asynchronous computation or long-running
analytics, where data contributors are not required to be constantly available or online. However, it also
results in a loss of control, since the compute parties can decide to run whatever computation they agree

upon, without involving the data contributors.

Secure Data Deletion in Outsourced Secure Computation. An approach to increasing data contributor

121

control over their data in this outsourced model is to provide them with verifiably correct and secure data
deletion mechanisms. A challenge is that it can be difficult to determine the source or owners of such data,
since they are in secret-shared form, e.g., data may be associated with an identified or encrypted shared
user or email. Furthermore, the data deletion mechanism must itself be secure and oblivious. Otherwise,
it may constitute a side channel through which adversaries can attribute the deleted data to its owners,

and use that to deduce information about that data given prior released outputs.

Policy Enforcement in Outsourced Secure Computation. Another promising approach is to rely on
policy enforcement e.g., in the style of Sesame or other related work. In this setting, data contributors
attach privacy policies to each of their shares that govern what functions the compute parties may run. As
long as some threshold of computer parties honestly check these policies, secure computation guarantees

that the outputs of violating functions cannot be reconstructed.

One challenge is that this makes the policy check a part of the secure computation itself and thus
requires it to be executed using the same underlying cryptographic techniques. This is slow when policy
checks contain non-linear operations, e.g., checking that the number of users that contributed data to
some specific aggregate is greater than a threshold (min_k). Furthermore, the policy check itself may
depend on the underlying secret inputs. Thus, by observing whether a policy check succeeds or fails,

adversaries can learn information about the inputs.

Guaranteeing Data Contributor Differential Privacy Preferences. Statistical privacy techniques,
such as differential privacy (DP) [DMN+06], are often deployed in a centralized model, where a single
analyst collects the input data and performs their statistical analysis over it. The analyst then adds the
required noise to ensure that differential privacy’s guarantees are upheld. That is, the probability of any
external adversary successfully determining whether a particular user’s data were in the data set or not is

bound by a function of two configurable parameters, ¢ and .

Data contributors similarly face a loss of control in this scenario. They have no guarantees that the
analysts added noise correctly!. Furthermore, they have no guarantees that analysts did not overuse their
data, by releasing multiple aggregates over it over time. This is problematic, as repeated release results in

proportionally lower overall privacy.

'In fact, sampling noise correctly to meet a desired € and § is non-trivial even for trusted parties [Mir12; NSN+24].

122

Existing work [LPT+21] provides systems to track and control the overall loss of privacy, measured
by a privacy budget, in cases where data can be analyzed over time. However, this line of work assumes
that the self-declared privacy consumption of each workload is accurate. In other words, it assumes that
each workload correctly configured the noise distribution and declares the resulting € and §. It also does

not protect against bugs and errors in the system, its configuration, or how it is deployed.

An interesting line of research is to build systems that can provide end-users and data contributors
with end-to-end guarantees in this setting, for example, by using infrastructure with a stronger policy
enforcement guarantee, such as Sesame, to power the tracking and accounting of various users’ privacy
budgets. This could also be combined with static analysis approaches to validate or deduce the actual €

and ¢ induced by some code, or assist in configuring and sampling the underlying noise distribution.

123

CHAPTER 7

Conclusion

Application developers often implement buggy code that may misuse user data in violation of privacy
laws such as the GDPR as well as their own self-set privacy policies and terms of service. This not only
results in a loss of privacy for affected individuals, but also in large financial and reputation damages for
companies via fines and privacy scandals. A common reason for these violations is the lack of practical
systems and tools to assist application developers in ensuring their applications meet the desired privacy

requirements.

This dissertation presented familiar and practical systems that web applications can use to get
automatic compliance assurances for many requirements from privacy laws. The dissertation focuses
in particular on storage and processing requirements around respecting end-user consent and ensuring
that users have control over their data. The storage requirements include correct handling of access and
deletion requests from end users, often called subject access requests (SARs), as well as encryption at rest.
The processing requirements govern the application code and business logic, specifically to ensure proper
authentication and access control, purpose limitations, restriction of processing for certain purposes, and
respecting user consent. We discussed these requirements and their legal basis in GDPR and GDPR-like
laws in more detail in §2.1, and provided an overview of some existing privacy-conscious systems and

approaches that aim to help applications comply with them or related privacy properties in §2.2.

The main technical contributions of this dissertation are the design, implementation, and evaluation
of two practical systems: K9db (§3) and Sesame (§4). K9db is a privacy-compliant database that
supports compliance with GDPR-style access and deletion requests. K9db relies on declarative schema

annotations to capture application-specific ownership semantics and automatically handles access and

124

deletion requests as built-in primitives. K9db rethinks database design around data ownership as a
first-order principle, by implementing a new storage layer organized into per-user micro-databases and
providing compliance transactions to ensure data ownership integrity is preserved throughout application

execution.

Sesame enforces application-level privacy policies over application code. These include access
control, purpose limitation, and user consent. They also include additional privacy policies that go beyond
what is strictly required for compliance but may be desirable for applications to enforce internally, such
as policies around aggregation, securing cryptographic keys, among others. Sesame combines recent
advances in memory safe languages and runtime sandboxing with code review processes in software

engineering to achieve practical enforcement with reasonable developer effort.

Finally, we looked at how application developers can use K9db and Sesame to meet the consent and
control requirements of privacy laws in practice. We compared this experience to the status quo approach
to compliance, where application developers must manually implement any required features and ensure
that the required policies are upheld via explicit checks or implicit application logic scattered across
the application code. We explored this in §5 using WebSubmit, an open-source web application for
homework submission that we deployed in various courses at Brown, as a case study. We discussed a
general blueprint for how to configure K9db and Sesame to enforce the requirements of the law, and how
applications integrate their features, such as data access and deletion, within their larger workflows and

user interfaces.

We evaluated each of the systems presented in this dissertation using realistic case studies and
application workloads. These experiments confirm that the systems meet their respective goals: (i) the
systems require reasonable developer effort to use correctly, and (ii) web applications that use these
systems exhibit end-to-end performance comparable to the current status quo, where compliance is
manual and underlying web systems do not offer built-in support for compliance. This provides evidence
to support the central thesis statement of this dissertation. That is, it demonstrates that it is possible to
build familiar and compatible privacy conscious systems that simplify compliance for well-intentioned
application developers, including with privacy requirements mandated by privacy laws and beyond, while

reducing application developer effort and with reasonable application performance.

125

Bibliography

[Abol18]

[ACC+21]

[ADS17]

[aer20]

[AGJ+21]

[Ama23]

[ARA+19]

John M. Abowd. “The U.S. Census Bureau Adopts Differential Privacy”. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. KDD ’18. London, United Kingdom: Association for Computing Machinery,
2018, page 2867 (cited on pages 6, 22).

Abdelrahaman Aly, Karl Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dragos
Rotaru, Oliver Scherer, Peter Scholl, Nigel P Smart, Titouan Tanguy, et al. Scale-mamba v1.
14: Documentation. https://nigelsmart.github.io/SCALE/Documentation.pdf.
2021 (cited on page 21).

Paul C Attie, Kinan Dak Albab, and Mouhammad Sakr. “Model and program repair via
sat solving”. In: ACM Transactions on Embedded Computing Systems (TECS) 17.2 (2017),
pages 1-25 (cited on page 11).

aermin. ghChat (react version). 2020. URL: https://github. com/aermin/ghChat
(visited on 05/02/2021) (cited on page 51).

Archita Agarwal, Marilyn George, Aaron Jeyaraj, and Malte Schwarzkopf. ‘“Retrofitting
GDPR Compliance onto Legacy Databases”. In: Proceedings of the VLDB Endowment 15
(Dec. 2021) (cited on page 23).

Amazon Web Services. Navigating GDPR Compliance on AWS: Encrypt Data at Rest.
2023. URL: https://docs.aws.amazon.com/whitepapers/latest/navigating-
gdpr-compliance/encrypt-data-at-rest.html (visited on 05/05/2021) (cited on
page 42).

Brooke Auxier, Lee Rainie, Monica Anderson, Andrew Perrin, Madhu Kumar, and Erica
Turner. Americans and Privacy: Concerned, Confused and Feeling Lack of Control Over

Their Personal Information. Nov. 2019. URL: https : / /www . pewresearch . org/

126

https://nigelsmart.github.io/SCALE/Documentation.pdf
https://github.com/aermin/ghChat
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/

[Arcl7]

[ASA+21]

[AZZ+25]

[BCD+09]

[BCH+18]

[Ben24]

[BGW38S]

internet/2019/11/15/americans-and-privacy- concerned- confused-and-
feeling- lack- of- control - over - their - personal - information/ (cited on
page 1).

Scott Arciszewski. Building Searchable Encrypted Databases with PHP and SQL. May
2017. URL: https://paragonie.com/blog/2017/05/building- searchable-
encrypted-databases-with-php-and-sql (cited on page 42).

Ishtiyaque Ahmad, Laboni Sarker, Divyakant Agrawal, Amr El Abbadi, and Trinabh
Gupta. “Coeus: A system for oblivious document ranking and retrieval”. In: Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP). 2021,
pages 672—690 (cited on page 21).

Justus Adam, Carolyn Zech, Livia Zhu, Sreshtaa Rajesh, Nathan Harbison, Mithi Jethwa,
Will Crichton, Malte Schwarzkopf, and Shriram Krishnamurthi. “Paralegal: Practical Static
Analysis for Privacy Bugs”. In: Proccedings of the 19th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 2025. Forthcoming (cited on page 19).
Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas Jakobsen,
Mikkel Krgigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael Schwartzbach, and Tomas Toft. “Secure Multiparty Computation Goes Live”.
In: Financial Cryptography and Data Security. Edited by Roger Dingledine and Philippe
Golle. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pages 325343 (cited on
pages 6, 21).

Edmon Begoli, Jesis Camacho-Rodriguez, Julian Hyde, Michael J. Mior, and Daniel
Lemire. “Apache Calcite: A Foundational Framework for Optimized Query Processing
Over Heterogeneous Data Sources”. In: Proceedings of the 2018 International Conference
on Management of Data. Houston, Texas, USA, 2018, pages 221-230 (cited on page 41).
Sergio Benitez. rocket. 2024. URL: https://docs.rs/rocket/latest/rocket/
(visited on 04/19/2024) (cited on pages 73, 107).

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theorems for
non-cryptographic fault-tolerant distributed computation”. In: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing. STOC ’88. Chicago, Illinois, USA:

Association for Computing Machinery, 1988, pages 1-10 (cited on pages 6, 21, 121).

127

https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://docs.rs/rocket/latest/rocket/

[BHP+92]

[BKV+21]

[blal8]

[BLN+24]

[BLWOS]

[Bral9]

[Bru2l]

[BVR15]

Alan C Bomberger, Norman Hardy, A Peri, Frantz Charles, R Landau, William S Frantz,
Jonathan S Shapiro, and Ann C Hardy. “The KeyKOS nanokernel architecture”. In: Pro-
ceedings of the USENIX Workshop on Micro-kernels and Other Kernel Architectures. 1992
(cited on page 17).

Lukas Burkhalter, Nicolas Kiichler, Alexander Viand, Hossein Shafagh, and Anwar Hith-
nawi. “Zeph: Cryptographic Enforcement of End-to-End Data Privacy”. In: Proceedings
of the 15" USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Virtual Event, July 2021, pages 387-404 (cited on pages 3, 20).

blackbeam. mysqgl. 2018. URL: https://docs.rs/mysql_common/latest/mysql_
common/ (visited on 04/19/2024) (cited on page 73).

Nataliia Bielova, Laura Litvine, Anysia Nguyen, Mariam Chammat, Vincent Toubiana,
and Estelle Hary. “The effect of design patterns on (present and future) cookie consent
decisions”. In: Proceedings of the 33rd USENIX Security Symposium (USENIX Security).
2024, pages 2813-2830 (cited on page 97).

Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A framework for fast privacy-
preserving computations”. In: Computer Security-ESORICS 2008: 13th European Sympo-
sium on Research in Computer Security, MdLaga, Spain, October 6-8, 2008. Proceedings
13. Springer. 2008, pages 192-206 (cited on page 21).

National Congress of Brazil. Lei Geral de Prote¢do de Dados [Brazilian General Data
Protection Law]. English translation by Ronaldo Lemos, Daniel Douek, Sofia Lima Franco,
Ramon Alberto dos Santos and Natalia Langenegger. 2019. URL: https://iapp.org/
media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
(visited on 06/11/2020) (cited on pages 1, 12).

Graeme Bruce. Privacy and Big Tech: Gauging attitudes around the world. Mar. 2021.
URL: https://today.yougov.com/technology/articles/35025-privacy-and-
big-tech-gauging-attitudes-around-worl (cited on page 1).

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. “HLIO: Mixing static and
dynamic typing for information-flow control in Haskell”. In: Proceedings of the 20™
ACM SIGPLAN International Conference on Functional Programming (ICFP). Vancouver,

British Columbia, Canada, Aug. 2015, pages 289-301 (cited on page 18).

128

https://docs.rs/mysql_common/latest/mysql_common/
https://docs.rs/mysql_common/latest/mysql_common/
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://today.yougov.com/technology/articles/35025-privacy-and-big-tech-gauging-attitudes-around-worl
https://today.yougov.com/technology/articles/35025-privacy-and-big-tech-gauging-attitudes-around-worl

[Cal]

[Car23]

[CCPA18]

[CDN+20]

[Chal8]

[Chl10a]

[Chl10b]

[Cho25]

[CKK+20]

California Attorney General. Privacy Enforcement Actions. URL: https://oag.ca.gov/
privacy/privacy-enforcement-actions (visited on 07/31/2023) (cited on page 56).
Pierre Carbonnelle. PYPL PopularitY of Programming Language. 2023. URL: https:
//pypl.github.io/PYPL.html (visited on 04/29/2025) (cited on page 3).

California Legislature. The California Consumer Privacy Act of 2018. June 2018. URL:
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_
id=201720180AB375 (cited on pages 1, 5, 12).

Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto, Joshi Cordova, Benoit Reitz,
Benjamin Strahs, Daniel Obenshain, Paul Pearce, and Ioannis Papagiannis. “DELF: Safe-
guarding deletion correctness in Online Social Networks”. In: Proceedings of the 29™
USENIX Security Symposium (USENIX Security). Banff, Canada, Aug. 2020 (cited on
pages 16, 52, 105).

Adhityaa Chandrasekar. Commento. 2018. URL: https : / / github . com/adtac/
commento (visited on 05/02/2021) (cited on page 51).

Adam Chlipala. “Static checking of dynamically-varying security policies in database-
backed applications”. In: Proceedings of the 9" USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI). Vancouver, British Columbia, Canada, 2010,
pages 105-118 (cited on page 18).

Adam Chlipala. “Ur: statically-typed metaprogramming with type-level record computa-
tion”. In: Proceedings of the 31" ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). Toronto, Ontario, Canada, 2010, pages 122—133 (cited
on page 18).

Julian Chokkattu. Your Next AI Wearable Will Listen to Everything All the Time. Jan. 2025.
URL: https://www.wired.com/story/bee-ai-omi-always-listening-ai-
wearables/ (cited on page 1).

Andrew Chung, Subru Krishnan, Konstantinos Karanasos, Carlo Curino, and Gregory R.
Ganger. “Unearthing inter-job dependencies for better cluster scheduling”. In: Proceedings
of the 14" USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Banff, Canada, Nov. 2020, pages 1205-1223 (cited on page 16).

129

https://oag.ca.gov/privacy/privacy-enforcement-actions
https://oag.ca.gov/privacy/privacy-enforcement-actions
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://github.com/adtac/commento
https://github.com/adtac/commento
https://www.wired.com/story/bee-ai-omi-always-listening-ai-wearables/
https://www.wired.com/story/bee-ai-omi-always-listening-ai-wearables/

[Clal9]

[Com]

[CPA+22]

[CVMO7]

[DAA+24a]

[DAA+24b]

[DD77]

[DDH+22]

Lin Clark. Standardizing WASI: A system interface to run WebAssembly outside the web.
Mar. 2019. URL: https://hacks.mozilla.org/2019/03/standardizing-wasi-a-
webassembly-system-interface/ (visited on 08/12/2024) (cited on page 79).
Federal Trade Commission. FTC Charges Twitter with Deceptively Using Account Security
Data to Sell Targeted Ads. URL: https://www.ftc.gov/news-events/news/press-
releases /2022 /05 / ftc- charges - twitter - deceptively - using- account -
security-data-sell-targeted-ads (visited on 07/31/2023) (cited on page 14).
Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan. “Modular Informa-
tion Flow through Ownership”. In: Proceedings of the 43™* ACM SIGPLAN International
Conference on Programming Language Design and Implementation (PLDI). San Diego,
California, USA, 2022, pages 1-14 (cited on pages 68, 70, 108, 148).

Stephen Chong, K. Vikram, and Andrew C. Myers. “SIF: enforcing confidentiality and
integrity in web applications”. In: Proceedings of 16" USENIX Security Symposium.
Boston, Massachusetts, USA, Aug. 2007 (cited on page 18).

Kinan Dak Albab, Artem Agvanian, Allen Aby, Corinn Tiffany, Alexander Portland, Sarah
Ridley, and Malte Schwarzkopf. “Sesame: Practical End-to-End Privacy Compliance
with Policy Containers and Privacy Regions”. In: Proceedings of the 30th ACM SIGOPS
Symposium on Operating Systems Principles (SOSP). 2024, pages 709-725 (cited on
pages 2, 10).

Kinan Dak Albab, Artem Agvanian, Allen Aby, Corinn Tiffany, Alexander Portland, Sarah
Ridley, and Malte Schwarzkopf. Sesame. Sept. 2024. URL: https: //github. com/
brownsys/sesame (visited on 09/14/2024) (cited on page 58).

Dorothy E. Denning and Peter J. Denning. “Certification of programs for secure infor-
mation flow”. In: Communications of the ACM 20.7 (1977), pages 504-513 (cited on
page 18).

Kinan Dak Albab, Jonathan Dilorenzo, Stefan Heule, Ali Kheradmand, Steffen Smolka,
Konstantin Weitz, Muhammad Timarzi, Jiaqi Gao, and Minlan Yu. “SwitchV: automated
SDN switch validation with P4 models”. In: Proceedings of the 36th ACM Special Interest
Group on Data Communication Conference (SIGCOMM). 2022, pages 365-379 (cited on

page 10).

130

https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://www.ftc.gov/news-events/news/press-releases/2022/05/ftc-charges-twitter-deceptively-using-account-security-data-sell-targeted-ads
https://www.ftc.gov/news-events/news/press-releases/2022/05/ftc-charges-twitter-deceptively-using-account-security-data-sell-targeted-ads
https://www.ftc.gov/news-events/news/press-releases/2022/05/ftc-charges-twitter-deceptively-using-account-security-data-sell-targeted-ads
https://github.com/brownsys/sesame
https://github.com/brownsys/sesame

[Denl3]

[Des24]

[DIL+17]

[DIL+19]

[DIV+22]

[DMN+06]

[DRF+17]

[DSA+23]

Frank Denis. The Sodium cryptography library. June 2013. URL: https://download.
libsodium.org/doc/ (cited on page 41).

Damien Desfontaines. A list of real-world uses of differential privacy. Sept. 2024. URL:
https://desfontain.es/blog/real -world-differential - privacy.html
(cited on page 6).

Kinan Dak Albab, Rawane Issa, Andrei Lapets, Azer Bestavros, and Nikolaj Volgushev.
“Scalable secure multi-party network vulnerability analysis via symbolic optimization™.
In: Proceedings of the 2017 IEEE Security and Privacy Workshops (SPW). IEEE. 2017,
pages 211-216 (cited on page 11).

Kinan Dak Albab, Rawane Issa, Andrei Lapets, Peter Flockhart, Lucy Qin, and Ira Globus-
Harris. “Tutorial: Deploying secure multi-party computation on the web using JIFF”. In:
Proceedings of the 4th IEEE Secure Development Conference (SecDev). 2019 (cited on
pages 2, 10, 11, 21, 121).

Kinan Dak Albab, Rawane Issa, Mayank Varia, and Kalman Graffi. “Batched differentially
private information retrieval”. In: Proceedings of the 31st USENIX Security Symposium
(USENIX Security). 2022, pages 3327-3344 (cited on pages 2, 10, 21).

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Calibrating noise
to sensitivity in private data analysis”. In: Theory of Cryptography: Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings
3. Springer. 2006, pages 265-284 (cited on pages 6, 21, 122).

Christian Dietrich, Valentin Rothberg, Ludwig Fiiracker, Andreas Ziegler, and Daniel
Lohmann. “cHash: Detection of Redundant Compilations via AST Hashing”. In: Pro-
ceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC). Santa Clara,
California, USA, July 2017, pages 527-538 (cited on page 73).

Kinan Dak Albab, Ishan Sharma, Justus Adam, Benjamin Kilimnik, Aaron Jeyaraj, Raj
Paul, Artem Agvanian, Leonhard Spiegelberg, and Malte Schwarzkopf. “K9db: Privacy-
Compliant Storage For Web Applications By Construction”. In: Proceedings of the 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2023,

pages 99-116 (cited on pages 2, 10).

131

https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
https://desfontain.es/blog/real-world-differential-privacy.html

[EKOS]

[Eur22]

[Fac]

[FBS+23]

[FERPA74]

[FZL+23]

[Gat07]

[Gaz19]

[GBS+19]

Petros Efstathopoulos and Eddie Kohler. “Manageable Fine-grained Information Flow”. In:
Proceedings of the 3" ACM SIGOPS/EuroSys European Conference on Computer Systems
(EuroSys). Glasgow, Scotland, United Kingdom, 2008, pages 301-313 (cited on page 18).
European Data Protection Board. Binding Decision 2/2022 on the dispute arisen on
the draft decision of the Irish Supervisory Authority regarding Meta Platforms Ireland
Limited (Instagram) under Article 65(1)(a) GDPR. July 2022. URL: https://www.edpb.
europa.eu/system/files/2022-09/edpb_bindingdecision_20222_ie_sa_
instagramchildusers_en.pdf (visited on 09/14/2024) (cited on pages 2, 13, 56).
Facebook. Permanently Delete Your Facebook Account. URL: https://www.facebook.
com/help/2245628975556747?helpref=faq_content (visited on 05/21/2023) (cited
on pages 24, 30).

Mafalda Ferreira, Tiago Brito, José Fragoso Santos, and Nuno Santos. “RuleKeeper:
GDPR-Aware Personal Data Compliance for Web Frameworks”. In: Proceedings of the
44™ IEEE Symposium on Security and Privacy (S&P). San Francisco, California, USA,
May 2023, pages 2817-2834 (cited on pages 19, 94, 109).

Family Educational Rights and Privacy Act of 1974. United States Code of Laws, 20
U.S.C. § 1232g. Aug. 1974 (cited on pages 13, 55).

Muhammad Faisal, Jerry Zhang, John Liagouris, Vasiliki Kalavri, and Mayank Varia.
“TVA: A multi-party computation system for secure and expressive time series analytics”.
In: Proceedings of the 32nd USENIX Security Symposium (USENIX Security). 2023,
pages 5395-5412 (cited on page 21).

Carrie Gates. “Access control requirements for web 2.0 security and privacy”. In: IEEE
Web 2.0 (2007), pages 12—15 (cited on page 16).

Thailand Government Gazette. Personal Data Protection Act. Unofficial English trans-
lation. 2019. URL: https://thainetizen.org/wp-content /uploads/2019/11/
thailand-personal-data-protection-act-2019-en.pdf (visited on 06/11/2020)
(cited on page 12).

Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and Andrei Sabelfeld.

“Information-Flow Control for Database-Backed Applications”. In: Proceedings of the

132

https://www.edpb.europa.eu/system/files/2022-09/edpb_bindingdecision_20222_ie_sa_instagramchildusers_en.pdf
https://www.edpb.europa.eu/system/files/2022-09/edpb_bindingdecision_20222_ie_sa_instagramchildusers_en.pdf
https://www.edpb.europa.eu/system/files/2022-09/edpb_bindingdecision_20222_ie_sa_instagramchildusers_en.pdf
https://www.facebook.com/help/224562897555674?helpref=faq_content
https://www.facebook.com/help/224562897555674?helpref=faq_content
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf

[GDPR16]

[Gen09]

[Gho24]

[Go023]

[GSB+18]

[Har12]

[Harl18]

[HDC+23]

[HHN+19]

4™ 2019 IEEE European Symposium on Security and Privacy (EuroS&P). Stockholm,
Sweden, June 2019, pages 79-94 (cited on page 17).

European Union. “Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation)”. In: Official Journal of the European Union 1119
(May 2016), pages 1-88 (cited on pages 1, 5, 12, 24, 55).

Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings of the
41st Annual ACM Symposium on Theory of Computing. STOC *09. Bethesda, MD, USA:
Association for Computing Machinery, 2009, pages 169-178 (cited on pages 6, 21, 121).
Bijit Ghosh. LLM Privacy and Security. Oct. 2024. URL: https : //medium . com/
@bijit211987/11lm-privacy-and-security-56a859cbdlcb (cited on page 1).
Google, Inc. Google Open Source: Third-Party. Mar. 2023. URL: https://opensource.
google/documentation/reference/thirdparty (visited on 09/16/2024) (cited on
page 71).

Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbé Aratjo, Martin Ek,
Eddie Kohler, M. Frans Kaashoek, and Robert Morris. “Noria: dynamic, partially-stateful
data-flow for high-performance web applications”. In: Proceedings of the 13" USENIX
Symposium on Operating Systems Design and Implementation (OSDI). Carlsbad, Califor-
nia, USA, Oct. 2018, pages 213-231 (cited on pages 26, 42).

Dick Hardt. The OAuth 2.0 authorization framework. 2012. URL: https://datatracker.
ietf.org/doc/html/rfc6749 (visited on 04/29/2025) (cited on page 17).

Peter Bhat Harkins. Lobste.rs access pattern statistics for research purposes. Mar. 2018.
URL: https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_
for#c_hjOr1b (visited on 03/12/2018) (cited on page 43).

Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, and Nickolai Zeldovich.
“Private web search with Tiptoe”. In: Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles (SOSP). 2023, pages 396-416 (cited on page 21).
Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. “Sok: General

purpose compilers for secure multi-party computation”. In: Proceedings of the IEEE

133

https://medium.com/@bijit211987/llm-privacy-and-security-56a859cbd1cb
https://medium.com/@bijit211987/llm-privacy-and-security-56a859cbd1cb
https://opensource.google/documentation/reference/thirdparty
https://opensource.google/documentation/reference/thirdparty
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b

[HIPAA96]

[HKF+15]

[HZX+16]

[Ind19]

[Int23]

[IPC21]

[JDL+17]

[JFD+18]

symposium on security and privacy (SP). IEEE. 2019, pages 1220-1237 (cited on pages 6,
7,21).

The Health Insurance Portability and Accountability Act of 1996. United States Public
Law 104-191. Aug. 1996 (cited on pages 13, 55).

Vincent C. Hu, D. Richard Kuhn, David F. Ferraiolo, and Jeffrey Voas. “Attribute-Based
Access Control”. In: Computer 48.2 (2015), pages 85-88 (cited on page 16).

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. “Ryoan:
A Distributed Sandbox for Untrusted Computation on Secret Data”. In: Proceedings of
the 12" USENIX Conference on Operating Systems Design and Implementation (OSDI).
Savannah, Georgia, USA, 2016, pages 533—549 (cited on pages 3, 7, 20).

PRS Legislative Research India. The Personal Data Protection Bill, 2019. 2019. URL:
https://www.prsindia.org/billtrack/personal -data-protection-bill-
2019 (visited on 06/11/2020) (cited on pages 1, 12).

Intel. Intel Trust Domain Extensions (TDX). 2023. URL: https://www.intel . com/
content /www/us/en/developer/articles/technical /intetrust - domain-
extensions.html (visited on 04/17/2025) (cited on page 120).

Zsolt Istvan, Soujanya Ponnapalli, and Vijay Chidambaram. “Software-Defined Data
Protection: Low Overhead Policy Compliance at the Storage Layer is within Reach!”
In: Proceedings of the VLDB Endowment 14.7 (Mar. 2021), pages 1167-1174 (cited on
page 16).

Frederick Jansen, Kinan Dak Albab, Andrei Lapets, and Mayank Varia. “Brief Announce-
ment: Federated Code Auditing and Delivery for MPC”. In: Stabilization, Safety, and
Security of Distributed Systems: 19th International Symposium, SSS 2017, Boston, MA,
USA, November 5-8, 2017, Proceedings 19. Springer. 2017, pages 298-302 (cited on
page 11).

Mohamad Jaber, Ylieés Falcone, Kinan Dak Albab, John Abou-Jaoudeh, and Mostafa
El-Katerji. “A high-level modeling language for the efficient design, implementation,
and testing of Android applications”. In: International Journal on Software Tools for

Technology Transfer 20 (2018), pages 1-18 (cited on page 11).

134

https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://www.intel.com/content/www/us/en/developer/articles/technical/intetrust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intetrust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intetrust-domain-extensions.html

[JP22]

[KC21]

[Kil21a]

[Kil21b]

[KKP+22]

[Koh06]

[KSB+19]

[Kuz18]

[KYB+07]

[LCG+21]

Vojtéch Jungmann and Sebastian Pravda. Portfolio. 2022. URL: https://github.com/
admisio/Portfolio (visited on 04/12/2024) (cited on pages 73, 74).

Dmitry Kogan and Henry Corrigan-Gibbs. “Private blocklist lookups with checklist™. In:
Proceedings of the 30th USENIX security symposium (USENIX Security). 2021, pages 875—
892 (cited on page 21).

Benjamin Kilimnik. GDPR - Download Data button doesn’t return any data. 2021. URL:
https://github.com/shuup/shuup/issues/2614 (visited on 12/13/2021) (cited on
page 50).

Benjamin Kilimnik. GDPR - shuup_mutaddress rows not anonymized. 2021. URL: https:
//github.com/shuup/shuup/issues/2612 (visited on 12/13/2021) (cited on page 50).
Michael Koppmann, Christian Kudera, Michael Pucher, and Georg Merzdovnik. “Utilizing
Object Capabilities to Improve Web Application Security”. In: Applied Cybersecurity &
Internet Governance 1 (2022) (cited on page 17).

Eddie Kohler. HotCRP conference review software. 2006. URL: https://github.com/
kohler/hotcrp (visited on 07/22/2020) (cited on pages 29, 51).

Tim Kraska, Michael Stonebraker, Michael Brodie, Sacha Servan-Schreiber, and Daniel
Weitzner. “SchengenDB: A Data Protection Database Proposal”. In: Proceedings of the
2019 VLDB Workshop Towards Polystores that manage multiple Databases, Privacy,
Security and/or Policy Issues for Heterogenous Data (Poly). Los Angeles, California, USA,
Aug. 2019, pages 24-38 (cited on pages 7, 16).

Viktoras Kuznecovas. Mouthful. 2018. URL: https://github. com/vkuznecovas/
mouthful (visited on 05/02/2021) (cited on page 51).

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie
Kohler, and Robert Morris. “Information flow control for standard OS abstractions”. In:
Proceedings of the 21*' ACM SIGOPS Symposium on Operating Systems Principles (SOSP).
Stevenson, Washington, USA, 2007, pages 321-334 (cited on page 18).

Connor Luckett, Andrew Crotty, Alex Galakatos, and Ugur Cetintemel. “Odlaw: A Tool
for Retroactive GDPR Compliance”. In: Proceedings of the 37" IEEE International

Conference on Data Engineering (ICDE). Chania, Greece, Apr. 2021 (cited on page 23).

135

https://github.com/admisio/Portfolio
https://github.com/admisio/Portfolio
https://github.com/shuup/shuup/issues/2614
https://github.com/shuup/shuup/issues/2612
https://github.com/shuup/shuup/issues/2612
https://github.com/kohler/hotcrp
https://github.com/kohler/hotcrp
https://github.com/vkuznecovas/mouthful
https://github.com/vkuznecovas/mouthful

[LDI+19]

[LID+18]

[LKB+21]

[Lob18a]

[Lob18b]

[Lou20]

[LP25]

[LPT+21]

Andrei Lapets, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank Varia, Azer Bestavros,
and Frederick Jansen. “Role-based ecosystem for the design, development, and deploy-
ment of secure multi-party data analytics applications”. In: Proceedings of the 4th IEEE
Cybersecurity Development (SecDev). IEEE. 2019, pages 129-140 (cited on page 10).
Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank
Varia, and Azer Bestavros. “Accessible privacy-preserving web-based data analysis for
assessing and addressing economic inequalities”. In: Proceedings of the 1st ACM SIGCAS
Conference on Computing and Sustainable Societies (COMPASS). 2018, pages 1-5 (cited
on pages 6, 11, 21, 121).

Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova,
Deian Stefan, and Ranjit Jhala. “STORM: Refinement Types for Secure Web Applica-
tions”. In: Proceedings of the 15" USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Virtual Event, July 2021, pages 441-459 (cited on pages 7, 18,
56, 65, 73,74, 77).

Lobste.rs. Privacy: Lobsters. 2018. URL: https://lobste.rs/privacy (visited on
05/01/2021) (cited on page 43).

Lobsters Developers. Lobsters News Aggregator. Mar. 2018. URL: https://lobste.rs
(visited on 03/02/2018) (cited on pages 26, 43).

Privacy Out Loud. CNIL announces two fines against two doctors amounting to EUR
9,000 for failure to ensure the security of patient data. https://privacyoutloud.ro/
2020/12/22/cnil - announces-two-fines-against-two-doctors-amounting-
to-eur-9000- for- failure- to-ensure-the-security-of-patient-data/.
Accessed: 16-03-2022. 2020 (cited on page 13).

Carl Lerche and David Pedersen. Axum. 2025. URL: https://docs.rs/axum/latest/
axum/ (visited on 04/27/2025) (cited on page 107).

Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon, Roxana Geambasu, and Mathias
Lécuyer. “Privacy budget scheduling”. In: Proceedings of the 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 2021, pages 55-74 (cited on
pages 22, 123).

136

https://lobste.rs/privacy
https://lobste.rs
https://privacyoutloud.ro/2020/12/22/cnil-announces-two-fines-against-two-doctors-amounting-to-eur-9000-for-failure-to-ensure-the-security-of-patient-data/
https://privacyoutloud.ro/2020/12/22/cnil-announces-two-fines-against-two-doctors-amounting-to-eur-9000-for-failure-to-ensure-the-security-of-patient-data/
https://privacyoutloud.ro/2020/12/22/cnil-announces-two-fines-against-two-doctors-amounting-to-eur-9000-for-failure-to-ensure-the-security-of-patient-data/
https://docs.rs/axum/latest/axum/
https://docs.rs/axum/latest/axum/

[LTB+24]

[LWN+15]

[Mar22]

[MEH+17]

[Met22]

[Mil06]

[Mirl2]

[MLOO]

[MLS+20]

[MMI+13a]

Ada Lamba, Max Taylor, Vincent Beardsley, Jacob Bambeck, Michael D. Bond, and
Zhiqiang Lin. “Cocoon: Static Information Flow Control in Rust”. In: Proceedings of the
ACM on Programming Languages 8.O0OPSLA1 (Apr. 2024) (cited on pages 7, 18, 56,
115).

Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. “ObliVM: A
Programming Framework for Secure Computation”. In: 2015 IEEE Symposium on Security
and Privacy. 2015, pages 359-376 (cited on page 21).

MariaDB. MyRocks — MariaDB Knowledge Base. 2022. URL: https://mariadb.com/
kb/en/myrocks/ (visited on 12/06/2022) (cited on page 41).

Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Druschel. “Qapla:
Policy compliance for database-backed systems”. In: Proceedings of the 26" USENIX
Security Symposium. Vancouver, British Columbia, USA, Aug. 2017, pages 1463-1479
(cited on page 17).

Meta Platforms, Inc. RocksDB: A persistent key-value store for fast storage environments.
2022. URL: http://rocksdb.org/ (visited on 12/10/2022) (cited on page 25).

Mark Miller. Robust composition: Towards a unified approach to access control and
concurrency control. Johns Hopkins University, 2006 (cited on page 84).

Ilya Mironov. “On significance of the least significant bits for differential privacy”. In:
Proceedings of the 2012 ACM conference on Computer and Communications Security
(CCS). 2012, pages 650661 (cited on pages 6, 122).

Andrew C. Myers and Barbara Liskov. “Protecting privacy using the decentralized label
model”. In: ACM Transactions on Software Engineering and Methodology (TOSEM) 9.4
(2000), pages 410442 (cited on pages 18, 65, 115).

Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, and Mothy Roscoe. “Shared
Arrangements: practical inter-query sharing for streaming dataflows”. In: Proceedings of
the VLDB Endowment 13.10 (June 2020), pages 1793-1806 (cited on page 42).

Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Isard. “Differential
dataflow”. In: Proceedings of the 6" Biennial Conference on Innovative Data Systems

Research (CIDR). Asilomar, California, USA, Jan. 2013 (cited on page 42).

137

https://mariadb.com/kb/en/myrocks/
https://mariadb.com/kb/en/myrocks/
http://rocksdb.org/

[MMI+13b]

[MMT10]

[MNL+23]

[MSH+16]

[Mur21]

[MWCI10]

[NA15]

[NDG+20]

[NFG+13]

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martin Abadi. “Naiad: a timely dataflow system”. In: Proceedings of the 24" ACM
Symposium on Operating Systems Principles (SOSP). Farmington, Pennsylvania, USA,
Nov. 2013, pages 439455 (cited on page 42).

Sergio Maffeis, John C. Mitchell, and Ankur Taly. “Object Capabilities and Isolation of
Untrusted Web Applications”. In: 2010 IEEE Symposium on Security and Privacy. 2010,
pages 125-140 (cited on pages 17, 84).

Elizabeth Margolin, Karan Newatia, Tao Luo, Edo Roth, and Andreas Haeberlen. “Arbore-
tum: A planner for large-scale federated analytics with differential privacy”. In: Proceed-
ings of the ACM SIGOPS 29th Symposium on Operating Systems Principles (SOSP). 2023,
pages 451-465 (cited on page 21).

Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven Capadisli,
Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. “A Demonstration of
the Solid Platform for Social Web Applications”. In: Proceedings of the 25" International
Conference Companion on World Wide Web (WWW). Montréal, Québec, Canada, 2016,
pages 223-226 (cited on pages 3, 7, 22).

Sudharsanan Muralidharan. Socify: open source social network using Ruby on Rails. 2021.
URL: https://github.com/scaffeinate/socify (visited on 05/02/2021) (cited on
page 51).

Adrian Mettler, David A Wagner, and Tyler Close. “Joe-E: A Security-Oriented Subset of
Java.” In: NDSS. Volume 10. 2010, pages 357-374 (cited on page 84).

European Network and Information Security Agency. Privacy and data protection by
design: from policy to engineering. 2015. URL: https://data.europa.eu/doi/10.
2824/38623 (cited on page 24).

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin
Lerner, Hovav Shacham, and Deian Stefan. “Retrofitting fine grain isolation in the Firefox
renderer”. In: Proceedings of the 29" USENIX Security Symposium. Virtual Event, Aug.
2020, pages 699-716 (cited on pages 66, 70, 81).

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li,

Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, and

138

https://github.com/scaffeinate/socify
https://data.europa.eu/doi/10.2824/38623
https://data.europa.eu/doi/10.2824/38623

[Nor20]

[Nos23]

[NOY20a]

[NOY20b]

[NOY20c]

[NOY20d]

[NOY20e]

[NOY21]

[NOY22a]

Venkateshwaran Venkataramani. “Scaling Memcache at Facebook”. In: Proceedings of
the 10" USENIX Conference on Networked Systems Design and Implementation (NSDI).
Lombard, Illinois, USA, Apr. 2013, pages 385-398 (cited on page 46).

Noria Contributors. Noria Lobsters benchmark. June 2020. URL: https://github.
com/mit-pdos/noria/tree/3edd3ad55d2564493£7456d27abb41abf0169def/
applications/lobsters (cited on page 147).

Nostr. Nostr. https://github.com/nostr-protocol/nostr. 2023 (cited on pages 3,
22).

NOYB: European Center for Digital Rights. GDPRHub: AEPD PS/00448/2020, Xfera
Moviles S.A. 2020. URL: https://gdprhub.eu/index.php?title=AEPD_(Spain)_-
_PS/00448/2020 (visited on 03/15/2025) (cited on page 13).

NOYB: European Center for Digital Rights. GDPRHub: APD/GBA 81/2020. 2020. URL:
https://gdprhub . eu/index . php?title=APD/GBA_- _81 /2020 (visited on
05/06/2021) (cited on page 13).

NOYB: European Center for Digital Rights. GDPRHub: CNIL SAN-2020-008. 2020. URL:
https://gdprhub. eu/index.php?title=CNIL_-_SAN-2020- 008 (visited on
05/06/2021) (cited on page 56).

NOYB: European Center for Digital Rights. GDPRHub: CNIL SAN-2020-018, Nestor
SAS. 2020. URL: https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018
(visited on 05/06/2021) (cited on pages 13, 56).

NOYB: European Center for Digital Rights. GDPRHub: GPDDP 9485681, Vodafone
Italia. 2020. URL: https://gdprhub.eu/index.php?title=Garante_per_la_
protezione_dei_dati_personali_-_9485681 (visited on 05/06/2021) (cited on
page 56).

NOYB: European Center for Digital Rights. GDPRHub: CNIL SAN-2021-008, Brico Privé.
2021. URL: https://gdprhub. eu/index.php?title=CNIL_(France) _- _SAN-
2021-008 (visited on 03/04/2022) (cited on page 13).

NOYB: European Center for Digital Rights. GDPRHub: CNIL SAN-2022-019, Clearview
Al 2022. URL: https://gdprhub.eu/index.php?title=CNIL_(France)_-_SAN-

2022-019 (visited on 03/15/2025) (cited on page 13).

139

https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/nostr-protocol/nostr
https://gdprhub.eu/index.php?title=AEPD_(Spain)_-_PS/00448/2020
https://gdprhub.eu/index.php?title=AEPD_(Spain)_-_PS/00448/2020
https://gdprhub.eu/index.php?title=APD/GBA_-_81/2020
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=CNIL_(France)_-_SAN-2021-008
https://gdprhub.eu/index.php?title=CNIL_(France)_-_SAN-2021-008
https://gdprhub.eu/index.php?title=CNIL_(France)_-_SAN-2022-019
https://gdprhub.eu/index.php?title=CNIL_(France)_-_SAN-2022-019

[NOY22b]

[NSN+24]

[OF122]

[own21a]

[own21Db]

[PKY+21]

[PYI+16]

[QLJ+19]

[RFE15]

[Rob19]

NOYB: European Center for Digital Rights. GDPRHub: GPDP 9746068, T.S.M. 2022.
URL: https://gdprhub.eu/index.php?title=Garante_per_la_protezione_
dei _dati _personali_ (ITtaly) _- _9746068 (visited on 03/15/2025) (cited on
page 13).

Ivoline C Ngong, Brad Stenger, Joseph P Near, and Yuanyuan Feng. “Evaluating the
usability of differential privacy tools with data practitioners”. In: Proceedings of the 20th
Symposium on Usable Privacy and Security (SOUPS). 2024, pages 21-40 (cited on pages 6,
7, 122).

Kate O’Flaherty. Apple Slams Facebook And Google With Bold New Privacy Ad. May 2022.
URL: https://www. forbes.com/sites/kateoflahertyuk/2022/05/25/apple-
slams-facebook-and-google-with-bold-new-privacy-ad/ (cited on page 5).
ownCloud GmbH. GDPR compliant cloud storage. 2021. URL: https://owncloud.
com/gdpr (visited on 12/01/2021) (cited on page 23).

ownCloud GmbH. owncloud — share files and folders, easy and secure. 2021. URL: https:
//owncloud. com (visited on 12/01/2021) (cited on pages 23, 26, 28, 43, 47).

Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and Joseph
M Hellerstein. “Senate: a maliciously-Secure MPC platform for collaborative analyt-
ics”. In: Proceedings of the 30th USENIX Security Symposium (USENIX Security). 2021,
pages 2129-2146 (cited on page 21).

Nadia Polikarpova, Jean Yang, Shachar Itzhaky, and Armando Solar-Lezama. “Type-
Driven Repair for Information Flow Security”. In: CoRR abs/1607.03445 (2016). arXiv:
1607.03445 (cited on page 18).

Lucy Qin, Andrei Lapets, Frederick Jansen, Peter Flockhart, Kinan Dak Albab, Ira Globus-
Harris, Shannon Roberts, and Mayank Varia. “From usability to secure computing and
back again”. In: Proceedings of the 15th USENIX Symposium on Usable Privacy and
Security (SOUPS). 2019, pages 191-210 (cited on pages 6, 11).

Dhruv Rawat, Anamta Farook, and Mohsan Elahi. Sign Me Up. 2015. URL: https :
//github.com/signmeup/signmeup (visited on 04/28/2025) (cited on page 101).
Brent Robinson. Crypto shredding: How it can solve modern data retention challenges.

Jan. 2019. URL: https://medium. com/@brentrobinson5/crypto- shredding-

140

https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_(Italy)_-_9746068
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_(Italy)_-_9746068
https://www.forbes.com/sites/kateoflahertyuk/2022/05/25/apple-slams-facebook-and-google-with-bold-new-privacy-ad/
https://www.forbes.com/sites/kateoflahertyuk/2022/05/25/apple-slams-facebook-and-google-with-bold-new-privacy-ad/
https://owncloud.com/gdpr
https://owncloud.com/gdpr
https://owncloud.com
https://owncloud.com
https://arxiv.org/abs/1607.03445
https://github.com/signmeup/signmeup
https://github.com/signmeup/signmeup
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b

[RPB+09]

[Rub17]

[Rub18]

[RZH+20]

[San98]

[SBR+11]

[SBW+19]

[SBW+20]

how-it-can-solve-modern-data-retention-challenges-da874b01745b (cited
on page 13).

Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. “Laminar: practical fine-grained decentralized information flow control”. In:
Proceedings of the 30" ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Dublin, Ireland, 2009, pages 63—74 (cited on pages 18, 115).
Alexander Rubin. One Million Tables in MySQL 8.0. 2017. URL: https://www.percona.
com/blog/2017/10/01/one-million-tables-mysql-8-0/ (visited on 05/03/2021)
(cited on page 48).

Alexander Rubin. 40 million tables in MySQL 8.0 with ZFS. 2018. URL: https://www.
percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-
zfs/ (visited on 05/03/2021) (cited on pages 41, 48).

Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C Pierce. “Orchard: Dif-
ferentially private analytics at scale”. In: Proceedings of the 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 2020, pages 1065-1081 (cited on
page 21).

Ravi S Sandhu. “Role-based access control”. In: Advances in computers. Volume 46.
Elsevier, 1998, pages 237-286 (cited on page 16).

Emin Giin Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh, Dan
Williams, and Fred B. Schneider. “Logical attestation: an authorization architecture for
trustworthy computing”. In: Proceedings of the 23" ACM SIGOPS Symposium on Op-
erating Systems Principles (SOSP). Cascais, Portugal, 2011, pages 249-264 (cited on
page 18).

Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay Chi-
dambaram. Understanding and Benchmarking the Impact of GDPR on Database Systems.
2019. arXiv: 1910.00728 [cs.DB] (cited on page 7).

Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay Chi-
dambaram. “Understanding and Benchmarking the Impact of GDPR on Database Systems”.
In: Proceedings of the VLDB Endowment 13.7 (Mar. 2020), pages 1064—1077 (cited on
pages 7, 13, 15, 16, 23).

141

https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://arxiv.org/abs/1910.00728

[SCF+11]

[SCHOS]

[sch17]

[Sch20]

[Ser25]

[Shal8]

[Sha79]

[Shul8]

[SKK+19]

[SSF99]

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. “Secure distributed programming with value-dependent types”. In: SIGPLAN
Not. 46.9 (Sept. 2011), pages 266-278 (cited on page 18).

Nikhil Swamy, Brian J Corcoran, and Michael Hicks. “Fable: A language for enforcing
user-defined security policies”. In: Procedings of the 29" IEEE Symposium on Security and
Privacy (S&P). Oakland, California, USA, May 2008, pages 369-383 (cited on page 18).
schnack! schnack.js. 2017. URL: https://github. com/schn4ck/schnack (visited on
05/02/2021) (cited on page 51).

Malte Schwarzkopf. websubmit-rs: a simple class submission system. 2020. URL: https:
//github.com/ms705/websubmit-rs (visited on 06/03/2020) (cited on page 73).
Amazon Web Services. Policies and permissions in AWS Identity and Access Management.
2025. URL: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_
policies.html (visited on 04/29/2025) (cited on page 16).

Faiyaz Shaikh. React-Instagram-Clone-2.0. 2018. URL: https : / / github . com /
yTakkar/React-Instagram-Clone-2.0 (visited on 05/02/2021) (cited on page 51).
Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (1979),
pages 612613 (cited on pages 6, 21, 121).

Shuup Commerce, Inc. Shuup Open-Source E-Commerce Platform. 2018. URL: https:
//9ithub . com/shuup/shuup (visited on 12/05/2021) (cited on pages 26, 36, 43, 49,
50).

Malte Schwarzkopf, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. ‘“Position:
GDPR Compliance by Construction”. In: Proceedings of the 2019 VLDB Workshop
Towards Polystores that manage multiple Databases, Privacy, Security and/or Policy
Issues for Heterogenous Data (Poly). Los Angeles, California, USA, Aug. 2019 (cited on
page 8).

Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. “EROS: a fast capability
system”. In: Proceedings of the 17th ACM Symposium on Operating Systems Princi-
ples (SOSP). SOSP *99. Charleston, South Carolina, USA: Association for Computing
Machinery, 1999, pages 170-185 (cited on page 17).

142

https://github.com/schn4ck/schnack
https://github.com/ms705/websubmit-rs
https://github.com/ms705/websubmit-rs
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://github.com/yTakkar/React-Instagram-Clone-2.0
https://github.com/yTakkar/React-Instagram-Clone-2.0
https://github.com/shuup/shuup
https://github.com/shuup/shuup

[Sta24]

[SWC19]

[Sza22]

[TB21]

[Thol19]

[TKM+24]

[VSG+19]

[WKM19]

[WKN+22]

Federal Trade Commission (FTC) Staff in the Office of Technology. Al Companies:
Uphold Your Privacy and Confidentiality Commitments. Jan. 2024. URL: https://www.
ftc.gov/policy/advocacy-research/tech-at-£ftc/2024/01/ai-companies-
uphold-your-privacy-confidentiality-commitments (cited on page 1).
Supreeth Shastri, Melissa Wasserman, and Vijay Chidambaram. “How Design, Architec-
ture, and Operation of Modern Systems Conflict with GDPR”. In: Proceedings of the 11"
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud). July 2019 (cited on
page 12).

Gébor Szabd. Programming language popularity: Rust. 2022. URL: https://szabgab.
com/programming- language-popularity-rust (visited on 04/29/2025) (cited on
page 3).

Chris Tsang and Chan Billy. SeaORM: An async & dynamic ORM for Rust. 2021. URL:
https://crates.io/crates/sea-orm (visited on 09/17/2024) (cited on page 73).
Griffin Thorne. GDPR Meets its Match ... in China. July 2019. URL: https://www .
chinalawblog.com/2019/07 /gdpr-meets-its-match-in-china.html (visited
on 06/04/2020) (cited on pages 1, 12).

Pierre Tholoniat, Kelly Kostopoulou, Peter McNeely, Prabhpreet Singh Sodhi, Anirudh
Varanasi, Benjamin Case, Asaf Cidon, Roxana Geambasu, and Mathias Lécuyer. “Cookie
Monster: Efficient On-device Budgeting for Differentially-Private Ad-Measurement Sys-
tems”. In: Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles. 2024, pages 693-708 (cited on page 22).

Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets, and
Azer Bestavros. “Conclave: secure multi-party computation on big data”. In: Proceedings
of the 14th EuroSys Conference. EuroSys ’19. Dresden, Germany, 2019 (cited on page 21).
Frank Wang, Ronny Ko, and James Mickens. “Riverbed: Enforcing User-defined Privacy
Constraints in Distributed Web Services”. In: Proceedings of the 16™ USENIX Symposium
on Networked Systems Design and Implementation (NSDI). Boston, Massachusetts, USA,
Feb. 2019, pages 615-630 (cited on pages 7, 18, 56, 109).

Lun Wang, Usmann Khan, Joseph Near, Qi Pang, Jithendaraa Subramanian, Neel Somani,

Peng Gao, Andrew Low, and Dawn Song. “PrivGuard: Privacy regulation compliance made

143

https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2024/01/ai-companies-uphold-your-privacy-confidentiality-commitments
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2024/01/ai-companies-uphold-your-privacy-confidentiality-commitments
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2024/01/ai-companies-uphold-your-privacy-confidentiality-commitments
https://szabgab.com/programming-language-popularity-rust
https://szabgab.com/programming-language-popularity-rust
https://crates.io/crates/sea-orm
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html

[Yao86]

[YHA+16]

[YWZ+09]

[YYR21]

[ZBK+06]

[ZBMO8]

[Zda04]

[ZSC+22]

easier”. In: Proceedings of the 31°" USENIX Security Symposium. Boston, Massachusetts,
USA, Aug. 2022, pages 3753-3770 (cited on page 19).

Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: 27th Annual Sym-
posium on Foundations of Computer Science (sfcs 1986). 1986, pages 162—167 (cited on
pages 6, 21, 121).

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan,
and Stephen Chong. “Precise, dynamic information flow for database-backed applications”.
In: Proceedings of the 37" ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Santa Barbara, California, USA, 2016, pages 631-647 (cited
on pages 18, 19, 56).

Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. “Improving Appli-
cation Security with Data Flow Assertions”. In: Proceedings of the ACM SIGOPS 22"¢
Symposium on Operating Systems Principles (SOSP). Big Sky, Montana, USA, Oct. 2009,
pages 291-304 (cited on pages 7, 18, 19, 56, 65, 109, 115).

Juncheng Yang, Yao Yue, and K. V. Rashmi. “A Large-Scale Analysis of Hundreds of
In-Memory Key-Value Cache Clusters at Twitter”. In: ACM Transactions on Storage 17.3
(Aug. 2021) (cited on page 40).

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maziéres. “Making
Information Flow Explicit in HiStar”. In: Proceedings of the 7" USENIX Symposium on
Operating Systems Design and Implementation (OSDI). Seattle, Washington, USA, Nov.
2006, pages 263-278 (cited on pages 7, 18).

Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazieres. “Securing Distributed
Systems with Information Flow Control”. In: Proceedings of the 5" USENIX Symposium
on Networked Systems Design and Implementation (NSDI). San Francisco, California,
USA, Dec. 2008 (cited on page 18).

Steve Zdancewic. “Challenges for information-flow security”. In: Proceedings of the Ist
International Workshop on the Programming Language Interference and Dependence
(PLID’04). Volume 6. 2004 (cited on page 82).

Wen Zhang, Eric Sheng, Michael Chang, Aurojit Panda, Mooly Sagiv, and Scott Shenker.

“Blockaid: Data access policy enforcement for web applications”. In: Proceedings of the

144

16th USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2022,

pages 701-718 (cited on page 17).

145

Appendix A

K9db Artifact

Abstract

Our open source artifact contains our prototype implementation of K9db. It also includes the harnesses
and scripts for running and plotting the experiments described in this dissertation and the K9db paper

from OSDI 2023.

Our prototype provides a MySQL-compatible interface layer, which applications and developers can
use to issue SQL statements and queries to and retrieve their results. Our prototype is compatible with the
standard MySQL connectors and drivers for several languages, including C++, Rust, and Java. It is also

compatible with the command line MySQL and MariaDB clients.
Scope
Our prototype serves as a demonstration of the following:
1. The application scenarios described in §3 work with K9db and its schema annotations.

2. K9db’s system design and guarantees can be realized with a familiar MySQL-compatible interface

suitable for web applications.

3. The performance of compliant-by-construction databases is comparable to traditional databases,

such as MariaDB.

Contents

K9db. The artifact includes our prototype implementation and its MySQL-compatiblity layer. The

artifact contains instructions for building, running, and using this K9db.

146

Application Harnesses. The artifact includes harnesses for Lobsters, a Reddit-like discussion board
(§8.1.1), and ownCloud (§8.1.2), a file sharing application. The harnesses create the database schema and
load the database with data; they also execute loads with representative queries, and measure the time
required to process them. We used these harnesses to evaluate our prototype and the baselines shown in
our experiments. The Lobsters harness is a pre-existing open source harness that we adapted to work

with our prototype [Nor20].

Documentation. The artifact wiki on GitHub contains a tutorial on using K9db and its schema
annotations. The artifact also includes unit and end-to-end tests that validate that our prototype handles

application SQL operations correctly and provides correct compliance with SARs.
Hosting

Our artifact is hosted on GitHub at https://github.com/brownsys/K9db.

The version of the repository corresponding to the experimental results shown in this dissertation
is available at https://github.com/brownsys/K9db/releases/tag/osdi2023, with commit hash

df2bedffa05f70f508fad95al 1e2abdeSaTefe 4.

The corresponding wiki commit hash is ¢720b085ca34edc16246f296991e623a29933f9b.
Requirements

We developed our prototype on x86-64 machines running Ubuntu 20.04 and 22.04. Our prototype is
built using Bazel 4.2.1. We provide a Docker container that includes the necessary software dependencies.

We ran our experiments on Google Cloud using n2-standard-16 machines with a local SSD.

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
gusenix | | gusenix | | gusenix

AVAILABLE REPRODUCED

147

https://github.com/brownsys/K9db
https://github.com/brownsys/K9db/releases/tag/osdi2023

Appendix B

Scrutinizer

SCRUTINIZER Code. SCRUTINIZER is open-source software at https://github.com/brownsys/
scrutinizer. Our experiments in this dissertation and the Sesame paper from SOSP 2024 used the

version tagged sosp24.

SCRUTINIZER Analysis Details. SCRUTINIZER follows a two-stage approach to check the properties in

§4.5.1.

First, SCRUTINIZER builds a call tree of all functions and code that may be executed by the top-level
function under analysis. SCRUTINIZER uses Rust’s dataflow analysis framework to traverse function
bodies recursively in execution order. This discovers all possible function bodies that the top-level function
could call, and organizes them into a call tree. When it encounters dynamic dispatch, SCRUTINIZER
attempts to construct a superset of all concrete functions the dynamic dispatch may resolve to, and analyzes
all of them. If SCRUTINIZER cannot construct such a set, it rejects the function. SCRUTINIZER keeps
track of functions it visited to avoid unnecessary recomputation. This stage finishes when SCRUTINIZER

discover no more new function calls.

Second, SCRUTINIZER begins the analysis stage. SCRUTINIZER rejects a top-level function if it
captures any variables with a mutable reference, since such sensitive data could leak into such variables.
For top-level functions that pass this check, SCRUTINIZER labels the arguments to the function as “sensi-
tive”. It then traverses every statement in the call tree while simultaneously propagating the “sensitive”

label to aliases and derived variables using Flowistry [CPA+22]. This ensures that SCRUTINIZER keeps

track of sensitive arguments as they are passed, aliased, and derived from throughout the call tree. If

148

https://github.com/brownsys/scrutinizer
https://github.com/brownsys/scrutinizer

SCRUTINIZER encounters a function call into native or otherwise unresolvable code that sensitive vari-
ables flow into, it rejects. If SCRUTINIZER encounters a function call to an allow-listed function, or with
arguments that lack the sensitive label, it skips it. Otherwise, SCRUTINIZER analyzes the function’s body.
If SCRUTINIZER encounters an unsafe mutability mechanism, such as a raw mutable pointer dereference,
it rejects. If SCRUTINIZER finishes analyzing the call tree without rejecting, it accepts the top-level

function.

149

	Dedication
	Acknowledgments
	Introduction
	Background
	Conceptual Privacy Frameworks
	Systems for Privacy

	Contributions
	Dissertation Outline
	Related Publications

	Background
	Privacy Regulations
	Privacy-Conscious Systems
	Privacy-Conscious Systems Related to Compliance
	Privacy-Conscious Systems Beyond Compliance

	K9db: Privacy-Compliant Storage For Web Applications
	Motivation
	K9db Overview
	Modeling Data Ownership and Sharing
	K9db's Annotations
	Expressing Developers' Compliance Policies
	Data Ownership Graph
	Helping Developers Get Annotations Right
	Data Ownership Graph Properties

	Compliant by Construction Storage
	Storage Layout and Logical µDBs
	µDB Integrity
	Handling Subject Access Requests
	Atomicity, Consistency, Isolation, and Durability
	Compliance Transactions

	Query Execution
	Optimizations
	Materialized Views

	Implementation
	Evaluation
	Application Performance
	K9db Design Drill-Down
	Schema Annotation Effort

	Discussion
	Summary

	Sesame: Practical End-to-End Privacy Compliance with Policy Containers and Privacy Regions
	Motivation
	Sesame Overview
	Design
	Policies
	Context and Policy Checks
	Guarantees and Threat Model

	Policy Containers
	Privacy Regions
	Static Analysis and Verified Regions
	Sandboxes
	Critical Regions

	Implementation
	Application Case Studies
	Evaluation
	Developer Effort
	Application Performance
	Drill-Down Experiments

	Discussion
	Summary

	Case study: GDPR Compliance in Practice
	Configuring K9db and Sesame for Compliance
	Schema Annotations
	Sesame Policies

	Integrating Compliance Into Application Workflows
	Human-Readable Privacy Policies
	Consent and Other Policy Preferences
	Endpoints for Data Access and Deletion

	Compliance Without System Support
	Manually Supporting Access and Deletion Requests
	Manually Enforcing Application-Level Policies

	Discussion and Future Work
	Systems for Compliance with Other Databases and Programming Languages
	Extensions to K9db and Sesame
	Tracking Sesame policies in the database using SesameBun
	SesaSpec: Common Specification Language for K9db and Sesame
	Extending Sesame to Distributed and Microservices Applications with Tahini

	Complementary Notions of Privacy

	Conclusion
	K9db Artifact
	Scrutinizer

