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Abstract

Private Information Retrieval (PIR) allows several clients to
query a database held by one or more servers, such that the
contents of their queries remain private. Prior PIR schemes
have achieved sublinear communication and computation by
leveraging computational assumptions, federating trust among
many servers, relaxing security to permit differentially pri-
vate leakage, refactoring effort into an offline stage to reduce
online costs, or amortizing costs over a large batch of queries.

In this work, we present an efficient PIR protocol that com-
bines all of the above techniques to achieve constant amor-
tized communication and computation complexity in the size
of the database and constant client work. We leverage differ-
entially private leakage in order to provide better trade-offs
between privacy and efficiency. Our protocol achieves speed-
ups up to and exceeding 10x in practical settings compared
to state of the art PIR protocols, and can scale to batches
with hundreds of millions of queries on cheap commodity
AWS machines. Our protocol builds upon a new secret shar-
ing scheme that is both incremental and non-malleable, which
may be of interest to a wider audience. Our protocol provides
security up to abort against malicious adversaries that can
corrupt all but one party.

1 Introduction

Private Information Retrieval (PIR) [29,49] is a cryptographic
primitive that allows a client to retrieve a record from a public
database held by a single or multiple servers without revealing
the content of her query. PIR protocols have been developed
for a variety of settings, including information theoretic PIR
where the database is replicated across several servers [29],
and computational PIR using single server [49]. The differ-
ent settings of PIR are limited by various lower bounds on
their computation or communication complexity. In essence, a
server must “touch” every entry in the database when respond-
ing to a query, or else the server learns information about the

*K. Dak Albab and R. Issa contributed equally to this work.

Mayank Varia
Boston University

Kalman Graffi
Honda Research Institute Europe

query, namely what the query is not!

Recent PIR protocols [31,47,57, 68] achieve sub-linear
computation and communication by relying on a prepro-
cessing/offline stage that shifts the bulk of computation into
off-peak hours [11], relaxing security to allow limited leak-
age [72], or batching queries, mostly in the case when they
originate from the same client. These advances allowed PIR
to be used in a variety of applications including private pres-
ence discovery [17,67], anonymous communication and mes-
saging [7,26,50, 63], private media and advertisement con-
sumption [41,42], certificate transparency [57], and privacy
preserving route recommendation [80].

Existing sublinear PIR protocols are able to handle medium
to large databases of size n and still respond to queries rea-
sonably quickly. However, they scale poorly as the number
of queries increase: the sub-linear cost (e.g. v/n for Check-
list [47]) of handling each query quickly adds up when the
number of queries approaches or exceeds the size of the
database into a super-linear overall cost (e.g. n+/n). Effi-
ciently batching such queries and amortizing their overheads
is an open problem when these queries are made by different
clients: existing work that batches such queries assumes the
number of queries is much smaller than the database size [57],
burdens clients with making noise queries [72], or requires
clients to closely coordinate and share secrets when prepro-
cessing is used [11]. This complicates efforts to deploy PIR in
a variety of important applications including software updates,
contact tracing, content moderation, blacklisting of fake news,
software vulnerability look-up, and similar large-scale auto-
mated services. We demonstrate this empirically in section 2.

In this work, we introduce DP-PIR, a novel differentially
private PIR protocol tuned to efficiently handle large batches
of queries approaching or exceeding the size of the underlying
database. Our protocol batches queries from different non-
coordinating clients. DP-PIR is the first protocol to achieve
constant amortized server computation and communication,
as well as constant client computation and communication.

While the details of our protocol are different from earlier
work, at a high level our construction combines three ideas:
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1. Offloading public key operations to an offline stage so
that the online stage consists only of cheap operations [31,68].

2. High throughput batched shuffling of messages by mix-
nets and secure messaging systems [53,54,75,77].

3. Relaxing the security of oblivious data structures and
protocols to differentially private leakage [61].

DP-PIR Overview Our protocol is a batched multi-server
PIR protocol optimized for queries approaching or exceeding
the database size. DP-PIR is secure up to selective aborts
against a dishonest majority of malicious servers, as long as
at least one server is honest. Our protocol induces a per-batch
overhead linear in the size of the database; this overhead is
independent of the number of queries ¢ in that batch, with
a total computation complexity of O(n+ g) per entire batch.
When the number of queries approaches or exceeds the size
of the database, the amortized computation complexity per
query is constant. Furthermore, our protocol only requires
constant computation, communication, and storage on the
client side, regardless of amortization. We describe the details
of our construction in section 5.

Our protocol achieves this by relaxing the security guar-
antees of PIR to differential privacy (DP) [35]. Unlike tradi-
tional PIR protocols, servers in DP-PIR learn a noised dif-
ferentially private histogram of the queries made in a batch.
Clients secret share their queries and communicate them to
the servers, which are organized in a chain similar to a mixnet.
Our servers take turns shuffling these queries and injecting
generated noise queries similar to Vuvuzela [77]. The last
server reconstructs the queries (both real and noise) revealing
a noisy histogram, and looks them up in the database. The
servers similarly secret share and de-shuffle responses, while
removing responses corresponding to their noise, and then
send them to their respective clients for final reconstruction.
The noise queries are generated from a particular distribution
to ensure that the revealed histogram is (g, §)-differentially
private, so that the smaller € and & get, the more noise queries
need to be added. The distribution can be configured to pro-
vide privacy at the level of a single query or all queries made
by the same client in a single batch or over a period of time.
The number of these noise queries is linear in n and é and
independent of the number of queries in a batch. The noise
does not affect the accuracy or correctness of any client’s
output. Section 3 describes our threat model and provides an
interpretation of what this differentially oblivious [23] access
pattern privacy means (as compared to traditional PIR).

Our protocol offloads all expensive public key operations to
a similarly amortizable offline preprocessing stage. This stage
produces correlated secret material that our protocol then
uses online. Our online stage uses only a cheap information-
theoretic secret sharing scheme, consisting solely of a few
field operations, which modern CPUs can execute in a hand-
ful of cycles. The security of our protocol requires that this
secret sharing scheme, which we define in section 4, is both
incremental and non-malleable. Finally, section 6 describes

how our protocol can be parallelized over additional machines
to exhibit linear improvements in latency and throughput.

Our Contribution We make three main contributions:

1. We introduce a novel PIR protocol that achieves con-
stant amortized server complexity with constant client com-
putation and communication, including both its offline and
online stage, when the number of queries is similar to or larger
than the size of the database, even when the queries are made
by different clients. Our offline stage performs public key op-
erations linear in the database and queries size, and the online
stage consists exclusively of cheap arithmetic operations.

2. We achieve a crypto-free online stage via a novel secret
sharing scheme that is both incremental and non-malleable,
based only on modular arithmetic for both sharing and re-
construction. To our knowledge, this is the first information
theoretic scheme that exhibits both properties combined. This
scheme may be of independent interest in scenarios involv-
ing Mixnets, (Distributed) ORAMs, and other shuffling and
oblivious data structures.

3. We implement this protocol and demonstrate its perfor-
mance and scaling to loads with hundreds of millions queries,
while achieving throughput several fold higher than existing
state of the art protocols. The experiments identify a criterion
describing application settings where our protocol is most
effective compared to existing protocols, based on the ratio
of the number of queries over the database size.

2 Motivation

Private Information Retrieval is a powerful primitive that con-
ceptually applies to a wide range of privacy preserving appli-
cations. Existing PIR protocols are well suited for applications
with medium to large databases and small or infrequent num-
ber of queries [7,41,66,80]. However, they are impractical for
a large class of applications with a large number of queries.

Motivating example One example that we consider through-
out this work is checking for software updates on mobile app
stores. The Google Play and iOS app stores contain an es-
timated 2.56 and 1.85 million applications each [44], and
the number of active Android and iOS devices exceed 3 and
1.65 billion, respectively [32]. These devices perform periodic
background checks to ensure that their installed applications
are up to date. Currently, these checks are done without pri-
vacy: the app store knows all applications installed on a device,
and can perform checks to determine if they are up-to-date
quickly. However, the installed applications on one’s device
constitute sensitive information. They can reveal information
about the user’s activity (e.g. which bank they use), or whether
the device has applications with known exploits.

It is desirable to hide the sensitive application information
from the app store as well as potential attackers. A device
can send a PIR query for each application installed, and the
servers can privately respond with the most up-to-date version
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label of each application. If the installed application is out of
date, the device can then download the updated application
via some anonymous channel, such as Tor. However, unlike
DP-PIR, existing PIR protocols cannot scale to such loads,
where the number of devices is about 1000x larger than the
size of the database, each with tens of applications installed,
given how quickly the sub-linear overheads per query add up.
We demonstrate this empirically with three state of the art
PIR protocols: Checklist [47], DPF [18], and SealPIR [6].

Additional Applications We believe that a large class of
applications demonstrate similar properties ideal for DP-PIR.
In privacy-preserving automated exposure notification for
contact tracing [22, 73, 74], the number of recent cases in a
city or region (i.e. the size of the database) is far smaller than
the total population of that area (i.e. the number of queries).
Similarly, identifying misinformation in end-to-end encrypted
messaging systems [48] usually involves a denylist far smaller
than the total number of messages exchanged in the system
within a reasonable batching time window.

Our protocol relies on having two or more non-colluding
parties that together constitute the service provider. This is a
common assumption used by many other PIR protocols. Se-
cure multiparty computation (MPC) has been applied in many
real world applications over the last decade. This includes
services federated over somewhat-independent subdivisions
within the same large organization [1,71], or additional par-
ties that volunteer to participate to promote common social
good [30, 69]. A third category, which we believe is most
suited for the app store example, involves providers actively
seeking out third parties to federate their services [13,52]
under contractual agreements for privacy or compliance rea-
sons, usually in exchange for financial or reputation incentives.
This has spurred various startups [64,65] that provide their
participation in secure multiparty computations as a service.

We believe that the differential privacy guarantees of DP-
PIR suffice for applications where the primary focus is pro-
tecting the privacy of any given client, but not overall trends
or patterns. Such as applications where it is also desirable for
the (approximate) overall query distribution to be publicly
revealed, e.g. an app store that displays download counts or a
private exposure notification service that also identifies infec-
tion hotspots. DP-PIR is ideal for such applications, since it
reveals a noised version of this distribution, without having
to use an additional private heavy hitters protocol [14]. In
practice, we emphasize that our relaxed DP guarantees should
be viewed as an improvement over the insecure status-quo,
rather than a replacement for PIR protocols that have stronger
guarantees but impractical overheads in our target settings.

Comparison to Existing PIR Protocols Private Informa-
tion Retrieval (PIR) has been been extensively studied in a
variety of settings. Information theoretic PIR replicates the
database over several non-colluding servers [10], while com-
putational PIR traditionally uses a single database and relies

Protocol Computation Communication
Online Offline | Online Offline
BIMO4 [11] n0-> — n0-> —
CK20 [31] NG n Mlogn  /n
Checklist [47] Vn n Alogn N/
Naive T n - n/q* -
PSIR [68] t q‘n n log‘n n/q
CK20[311% | g¢'vn n Vi /g
BIMO4 [11]4§ | gqn’ —~ 3 /q -
LGI15 [57] £ q"%n — vn -
This work || Cesn+q Cesn+q 1 1

T: support batching of queries made by the same client.
I: supports batching of queries made by different clients.
§: amortizes to n%, w > 2 is the matrix mult. exponent.

q: up to g = +/n.

||I: amortizes to a constant when g ~ n.

Table 1: Computation and communication complexity of var-
ious existing PIR protocols. Here, n is the database size, g*
and ¢ are the number of queries made by a single or differ-
ent clients. For protocols that support batching, computation
complexity represents the total complexity to handle a batch.
Communication is always per query

on cryptographic hardness assumptions [20, 28, 55].

Naive PIR protocols require a linear amount of computation
and communication (e.g. sending the entire database over to
the client), and several settings have close-to-linear lower
bounds on either computation or communication [56].

Modern PIR protocols commonly introduce an offline pre-
processing stage, which either encodes the database for faster
online processing using replication [11,15,31,47] and coding
theory [19,21,43,68], performs a linear amount of offline work
per client to make the online stage sub-linear [21,31,47,47],
or performs expensive public key operations so that the on-
line stage only consists of cheaper ones [31,47, 68]. Other
protocols rely on homomorphic primitives during online pro-
cessing [3,6,79].

Finally, some protocols allow batching queries to amortize
costs. When combined with preprocessing, batching is only
supported for queries originating from the same client [31,
47,68], or ones that share secret state [11]. Batching queries
from different clients without preprocessing is possible [45]
but has limitations. Earlier work induces a sublinear (but non
constant) amortized computation complexity [11,57]. Our
work amortizes the computation costs of queries made by
different queries down to a constant, while also requiring
constant client work. In section 8, we discuss €-PIR [72]
which also amortizes such queries but burdens clients with
generating the noise queries required for differential privacy.

Experiment Setup Our experiments measure the server(s)
time needed to process a complete set of queries with € = 0.1
and § = 107%. While the trends shown in these results are
intrinsic properties of our protocol design, the exact numbers
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Figure 1: Checklist and DP-PIR Total completion time (y-
axis, logscale) for varying number of queries (x-axis, logscale)
against a 2.5M database
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Figure 2: The ratios of queries/database (y-axis) after which
DP-PIR outperforms Checklist by the indicated x factor for
different database sizes (x-axis, logscale)

depend on the setup and protocol parameters. Section 7 dis-
cusses our setup and the effects of these parameters in detail.

Checklist Figure | shows the server computation time of
Checklist and DP-PIR when processing different number of
queries against a database with n = 2.5M elements. Our pro-
tocol has constant performance initially, which starts to in-
crease with the number of queries g as they exceed 10M. In
more detail, the computation time of DP-PIR is proportional
to the total count of noise and real queries c, gn + g, where
€o.1,10-6 = 276. Therefore, the cost induced by ¢ is negligible
compared to c¢ gn until g becomes relatively significant.

On the other hand, Checklist scales linearly with the num-
ber of queries throughout, as its computation time is propor-
tional to g/n. When the number of queries is small, this cost
is far smaller than the initial overhead of our system. As ¢
approaches n, both systems start getting comparable perfor-
mance. DP-PIR achieves identical performance to Checklist
at g = 1.9M (slightly below % the size of the database), and
outperforms Checklist for more queries. Our speedup over
Checklist grows with the ratio £, approaching a maximum
speedup determined by /n when the ratio approaches oo. For
a database with 2.5M elements, our experiments demonstrate
that we outperform Checklist by at least 2x, 5x, and 10x after

the ratio exceeds 1.5,3.9 and 8.1 respectively. We note that
the largest data-point in the two figures are extrapolated.

The ratio required for achieving a particular speedup is not
identical for all database sizes. As shown in Figure 2, DP-PIR
prefers larger databases: the larger the database, the smaller
the ratio required by DP-PIR to achieve a particular speedup,
and the larger the maximum speedup that DP-PIR can achieve
as g — oo,

We extrapolate from our empirical results to three pos-
sible scenarios for our Google Play store example, where
the database contains roughly 2.5M elements with 3B active
users, with the same setup and parameters as above. First,
we assume each user makes exactly a single query (corre-
sponding to a single app on their phone) resulting in a batch
of size ¢ = 3B, and £ = 1200. In the second scenario, we
assume each user checks the updates for all apps on their
phone (e.g. say at most 100 apps), but only configure our
system to provide DP guarantees only at the level of a single
query (i.e. event-DP). In the last scenario, each user similarly
makes 100 queries, but we configure our system to provide
user-level DP guarantees protecting all the queries of the
same user (i.e. user-DP), which results in adding 100 times
the amount of noise. Our estimates indicate that our protocol
will exhibit speedups of 161x, 180x, and 161x over checklist
in these scenarios respectively. We discuss the different DP
configurations in section 3. We exhibit similar trends with
larger speedups given even less queries over SealPIR [6] and
DPF [18], as shown in appendix A.

3 Protocol Overview

Our protocol consists of ¢y, ..., ¢4 clients and s1, ...,s,, servers.
We designate s; and s, as a special frontend and backend
server respectively. We assume that every server s; has a
public encryption key pk; known to all servers and clients,
with associated secret key sk;. Every server has a copy of
the underlying database T = K — (V,X) mapping keys to
values and signatures, such that T'[k] = (v,0), where G is a
(m,m)—threshold signature over (k,v) by the m servers. The
signatures are only needed for integrity and do not affect
the privacy of clients; they allow clients to verify that the
responses they received correspond to the correct T agreed
upon by the servers, and can be omitted when the backend is
assumed to be semi-honest. We refer to the query made by
client ¢; by ¢, and its associated response by r’ = (v/,c").

3.1 Setting

Our protocol is easiest to understand in the case of a sin-
gle epoch consisting of an input-independent offline stage
followed by an online stage. The client state, created in the
offline stage and consumed in the online one, consists exclu-
sively of random elements. Clients can store the seed used to
produce these elements to achieve constant storage relative to
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the number of queries and number of servers. A client need
only submit her secrets to the service during the offline stage,
and can immediately leave the protocol afterwards. The client
can reconnect at any later time to make a query without any
further coordination.

The offline stage is more computationally expensive than
the online one, since it performs a linear number of public key
operations overall. We suggest that the offline stage be carried
out during off-peak hours (e.g. overnight), when utilization
is low. Furthermore, both our stages are embarrassingly par-
allel in the resources of each party. It may be reasonable to
run the offline stage with more resources, if these resources
are cheaper to acquire overnight (e.g. spot instances). Our
offline stage is similar to Vuvuzela [77], which exhibits good
throughput. However, the linear number of public key oper-
ations performed by Vuvuzela makes it impractical for our
online stage. Indeed, our online stage is crypto-free using only
a handful of arithmetic operations per query.

In practice, services using DP-PIR alternate between col-
lecting a batch of queries submitted from clients within some
configurable time window, and processing that batch using
our online protocol. In section 7, we discuss the effects of this
batching window on our performance. Each batch requires
corresponding offline processing. Our protocol allows mul-
tiple offline stages (e.g. the ones corresponding to an entire
day’s worth of batches) to be pooled together into a propor-
tionally larger stage executed in one shot during off-peak
hours when resources are cheaper (e.g. the night before). The
clients can choose to make their queries at any time after pre-
processing, but client states from several uncombined offline
stages should not be used in a single online batch, to avoid
allowing the adversary to identify the origin of the query by
diffing out clients that participated in different stages.

Our protocol assumes that 7" and its signatures are provided
as input. Thus, the servers must agree on 7 and produce
signatures for it ahead of time. The same 7 and signatures
can be reused by many offline/online stages; servers need
only compute new signatures when the underlying database
changes, and may rely on timestamps to enable clients to
reject expired responses. The servers never sign or verify any
signatures during either the offline or online stages, and each
client needs to verify one signature per received response.
Therefore, the efficiency of signing/verification is secondary.
Instead, our protocol prefers signature schemes that produce
shorter signatures for lower bandwidth.

3.2 Threat Model

Our construction operates in the ‘anytrust’ model up to se-
lective abort. Specifically, we tolerate up to m — 1 malicious
servers and d — 1 malicious clients.

In terms of confidentiality, our protocol differs from tra-
ditional perfectly-private PIR protocols in that it leaks noisy
access patterns over the honest clients’ queries, in the form of

a differentially private noisy histogram H (Q) = Hnonest(Q) +
1(£.3,0).

As for integrity, our protocol is secure up to selective abort,
and does not guarantee fairness. Adversarial servers may elect
to stop responding to queries, effectively aborting the entire
protocol. Furthermore, they can do so selectively: any server
can decide to drop queries at random, the frontend server can
drop queries based on the identity of their clients, and the
backend server can drop queries based on their value.

We stress that an adversary cannot drop a query based
on the conjunction of the client’s identity and the value, re-
gardless of which subset of servers gets corrupted. Also, an
adversary can only drop a query, but cannot convince a client
to accept an incorrect response, since clients can validate the
correctness of received responses locally.

3.3 Interpreting Privacy

Our protocol can be configured to provide different levels
of (g,d)-differential privacy by selecting the parameters of
the underlying distribution used to sample noise queries. The
most efficient (and easiest to understand) configuration is of-
ten called event-DP, which provides guarantees at the level
of any single honest query. Another DP configuration, com-
monly termed user-DP, provides guarantees at the level of all
queries made by any honest client. We use event-DP through-
out the paper except when otherwise noted.

We provide either guarantee at the level of a single isolated
batch. In particular, we consider two batches of queries Q
and Q' over the honest clients’ queries to be ¢-neighboring
batches when they consists of identical queries except for ¢
queries. In event-DP, it is enough to consider ¢ = 1. While
in user-DP, we set ¢ to the number of queries a client can
make within a batch (or an upper bound of it). In either case,
the sensitivity is 2¢, which means that for the same €, the
expected number of noise queries we add grows linearly in ¢.

Definition 1 (Differentially Private PIR Access Patterns). For
any privacy parameters €,90, and every two O—neighboring
batches of queries Q,Q', the probabilities of our protocol pro-
ducing identical access pattern histograms are (€,0)-similar
when run on either set:

Pr[#H(Q) = H] < e*Pr[H(Q') = H] + 8

Our definition uses the substitution formulation of DP,
rather than the more common addition/removal; see [76, §1.6]
for details. Substitution is commonly used in secure computa-
tion protocols involving DP leakage [61]. We use this variant
since our protocol does not hide whether a client made a query
in a batch or not: the adversary already knows this e.g. by
observing IP addresses associated to queries. Instead, we hide
the value of the query itself. Substitution is more conservative
adding twice the expected amount of noise queries, since its
sensitivity is 2¢ compared to ¢ in the other.
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So far, we only discussed guarantees within a single on-
line stage. In any long running DP system where clients can
make unbounded queries, it is impossible to achieve user-DP
globally. Instead, practical systems [58] often rely on the user-
time-DP model, where the guarantees extend over all queries
made by a client over a set moving time window (e.g. a week).
We can achieve this by setting ¢ to the number of queries that
a client may make over a time window, regardless of how the
client distributes the queries over the batches in that window.
This follows from DP’s composition theorem.

One way to interpret our DP guarantees (aka “differential
obliviousness” [23]) is that they provide any client with plau-
sible deniability: a client that made queries g1, ...,g¢ over
some period of time can claim that her true queries were any
different ¢}, ..., q&,, and external distinguishers cannot falsify
this claim since the probability of either case inducing any
same observed histogram of access patterns is similar.

Whereas traditional differential privacy mechanisms trade
privacy for accuracy, differential obliviousness trades privacy
for performance while always providing accurate outputs. In
DP-PIR, increasing privacy (by lowering € and J or increasing
0) results in additional noise queries, making our protocol
proportionally slower, and requiring a proportionally larger
batch of queries to achieve the same amortization, and thus
speedup, over other protocols. The amount of noise queries
scales linearly in ¢ and é and sub-linearly in & (see Table 3).

4 Incremental Non-Malleable Secret Sharing

Our protocol relies on shuffling real queries with noise queries
by our chain of servers, similar to Vuvuzela and other mixnets
where public key onion encryption is used to pass secrets
through that chain. However, this induces a large number of
public key operations, proportional to m x |batch|. We use a
novel cheaper arithmetic-based secret sharing scheme instead
of onion encryption during our online stage.

The secret sharing scheme provides similar security guar-
antees to onion encryption, to ensure that input and output
queries are untraceable by external adversaries:

1. Secrecy: As long as one of the shares is unknown, re-
construction cannot be carried out by an adversary.

2. Incremental Reconstruction: A server that only knows a
single secret share and a running tally must be able to combine
them to produce a new tally. The new tally must produce the
original secret when combined with the remaining shares.

3. Independence: An adversary cannot link any partially
reconstructed output from a set of outputs to any shared input
in the corresponding input set.

4. Non-Malleability: An adversary who perturbs any given
share cannot guarantee that the output of reconstruction with
that perturbed share satisfies any desired relationship. In par-
ticular, the adversary cannot perturb shares such that recon-
struction yields a specific value (e.g., 0), or a specific function
of the original secret (e.g., adding a fixed offset).

Formally, we define a secret sharing scheme with incre-
mental reconstruction with the usual sharing mechanism but
a new method to recover the original secret.

Definition 2. An incremental secret sharing scheme S over a
field F and m parties contains two algorithms.
* Sh(q) disperses a secret q into a randomly chosen set of
shares § = q1,...,qm € F and some initial tally .
* Rec(li_1,qi) — l; performs party i’s partial reconstruc-
tion to produce running tally 1;.
The scheme is correct if for all sharings (g,lp) < Sh(q), the
overall reconstruction returns l,, = q.

Non-malleability is critical for preserving security when the
last (backend) server is corrupted. The backend can observe
the final reconstructed values of all queries to identify queries
perturbed by earlier colluding servers. If the perturbation can
be undone (e.g. by removing a fixed offset), then the backend
can learn the value of the query and link it to information
known by other servers, such as the identity of its client.

We formally define non-malleability through the following
indistinguishability game. It guarantees that if an adversarial
set of m — 1 parties submits a tampered partial tally [} | to
the honest party i, then the tally [ returned by the honest
party is uniformly random. As a result, / is independent of
(and therefore hides) the secret ¢, and it only completes to a
reconstruction of ¢ with probability 1/|F|.

Definition 3. Consider the following two games that only dif-
Jfer in the final step. Call them ! Left! and respectively.
Challenger C

G,lo = Sh(q)
calculate all 1

Adversary 4
secret q, honest party i

adversary shares lo, {q;} ji

modified tally I] | #1;_)

r-a
e

I} =Rec(lf_1,qi)
r<F

return bit b

We say that an incremental secret sharing scheme S =
(Sh,Rec) is non-malleable if for all adversaries 4, the Left
and Right games are (perfectly) indistinguishable.

Several non-malleable secret sharing schemes exist [9,40].
However, they are not incremental: their reconstruction is a
one-shot operation over all shares. Conversely, known incre-
mental schemes, such as additive or XOR-based sharing, are
vulnerable to malleability. It would have been possible to use
different primitives in our protocol that satisfy our desired
properties, such as authenticated onion symmetric-key en-
cryption. However, these operations remain more expensive
than simple information theoretic secret sharing schemes that
can be implemented with a handful of arithmetic operations.

Our Incremental Sharing Construction Given a secret g, a
prime modulus z, and an integer m, our scheme produces m +
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Algorithm 1 Client i Offline Stage

Input: Nothing.

Output state at the client: a list of anonymous secrets
[al,...,d,], one per each of the m servers. The client uses
these secrets in the online stage.

Output to s;: Onion encryption of @i, ...,d.,.

1. Generate Random Values: For each Server s;, the
client generates 4 values all sampled uniformly at ran-
dom: (1) A globally unique identifier 7. (2) Two in-
cremental pre-shares x; € Z; and y; € Z}. (3) An addi-
tive pre-share ¢/ € [0,2"). We define ¢/ = £ ¢/, mod 2
which the client uses to reconstruct the response online.

2. Build Shared Anonymous secrets: The client builds
a; = (t},t}+1,x;,y’]-,e;), for every server 1 < j'g m, us-
ing the generated random values above, with 7, | = 1.
These secrets are stored by the client for later use in the

online stage.

3. Onion Encryption: The client onion encrypts the se-
crets using the correspond server’s public key, such that
OEnc,, = Enc(skn, a,,) and OEnc; = Enc(sk;, a; ::

OEnci»H).

4. Secrets Submission: The client sends the onion cipher
OEncj to server s1. The client can leave the protocol as
soon as receipt of this message is acknowledged.

1 pairs go = (XanO)vql = (xlyyl)v'“vCIm = (xnzv)’m)’ where
each pair represents a single share of g. All x and y values are
chosen independently at random from [F; and IF} respectively,
except for the very first pair xg,yo, whose values are set to:

x():([(q—xm)xy,;l] ...—x1>xyf] mod z, yo = 0.

All shares except the first one can be selected prior to know-
ing g. This is important for our offline stage. The modulus z
must be as big as the key size in the underlying database (32
bits in our experiments). To reconstruct the secret g, we show
below the incremental reconstruction operations Rec(/;_1,¢;)
to construct the first partial tally and all subsequent ones:

lo =y0 x 1+x9 mod z,
lj :ijljfl +x; mod z.

Correctness (i.e., I, = ¢) stems from our choice of (xo,yo).
Refer to the full version of this work on ePrint [4] for the
proof showing that our construction is non-malleable.

5 Our DP-PIR Protocol

Offline Stage Our offline stage consists of a single sequen-
tial pass over the m servers. Clients generate random secrets

Algorithm 2 Server s; Offline Stage

Configuration: The underlying database 7 : K — (V,X), and
privacy parameters €, , .

Input from s;_1 or clients if j = 1: A set of onion ciphers of
anonymous secrets, one per each incoming request.

Output state at s;: A mapping M of unique tag tj- to its
corresponding shared anonymous secrets a? used to handle
incoming queries during the online stage. A list of generated
anonymous secrets L used to create noise queries during the
online stage. A sampled histogram A/ of noise queries to use
in the online stage.

Output to server sj 1: A set output onion ciphers corre-
sponding to input onion ciphers and noise generated by ;.

1. Onion Decryption: For every received onion cipher
OEnc!, the server decrypts the cipher with its secret key

skj, producing @ and OEnc',, ;.

2. Anonymous Secret Installation: For every decrypted
s§cret a’j = (t},t} H,x} y’j,e’j), the server stores entry
(t541,%}, Y], €;) at M[r;] for later use in the online stage.

If j <m:

3. Noise Pre-Sampling: The server samples a histogram
representing counts of noisy queries to add for every key
in the database A < (g,9d,¢), and computes the total
count of this noise § = Y A[.

4. Build shared anonymous secrets for noise: The server
generates S many anonymous secrets and onion encrypts
them for all s with j/ > j, using the same algorithm as
the client. The server stores these secrets in L.

5. Shuffling and Forwarding: The server shuffles all
onion ciphers, including all OE ncj» 1 decrypted in step
(1) or generated by step (4), and sends them over to the
next server §j41.

locally, and submit them after onion encryption to the first
server in the chain. The first server receives all such incom-
ing messages from clients, until a configurable granularity is
reached, e.g. after a certain time window passes or a number
of messages is received. All incoming messages at that point
constitutes the input set for that server. The server outputs a
larger set. This set contains both the processed input messages,
as well as new messages inserted by the server.

The client-side protocol is shown in algorithm 1. Con-
cretely, for each server j, client i generates secret ai- =
(z‘;‘.,tjurl ,xé-,y;, ei-), where tj- and t;'+1 are random tags chosen
from a sufficiently large domain that the client uses online to
point each server to its secret without revealing its identity, xj.

and y’j are secret shares from our incremental secret sharing
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Algorithm 3 Client i Online Stage

Input: A query ¢'. _
Input state at the client: a shared anonymous secrets a; =

(tj., t} 1 ,x;, y;, e’j) per server s; generated by the offline stage.

Output: A value v corresponding to T'[¢'].

1. Compute Final Incremental Secret Share: Client
computes [j = xp, so that (x;,0) combined with
(x5, 54, -+, (x5, ¥5,) is a valid sharing of ¢, per our incre-
mental secret sharing scheme.

2. Query Submission: Client sends (!,1}) to server s;.

3. Response Reconstruction: Client receives response r’i
from s; and reconstructs (v',6') = r{ —¢' mod 2°,

4. Response verification: The client ensures that ¢’ is a
valid signature over (¢',r") by s1,...,8m—1-

scheme used to reconstruct the query, and X ei- mod 2° = ¢/
are additive secret shares used to mask the response. The
exponent b corresponds to the bit size of values and signa-
tures (instantiated to 32 + 384 in our experiments). Our offline
protocol uses onion encryption from CCA-secure public key
encryption to pass secrets through the servers (here, :: denotes
string concatenation):
OEnc' = Enc(sky,d\ :: Enc(sky,db :: ... Enc(skm,at,) ...))
In addition to secrets from clients, each server must inject
sufficiently many secrets at subsequent servers to handle all
noise queries that the server needs to make in the online stage.
This corresponds to steps 3 and 4 in algorithm 2, where the
server computes the exact noise amount by pre-sampling.
The output set of each server contains onion ciphers, en-
crypted under the keys of the subsequent servers in the chain.
None of the plaintexts decrypted by the current server sur-
vives, they are all consumed and stored in the server’s local
mapping for use during the online stage. No linkage between
messages in the input and output sets is possible without
knowing the server’s secret key, since the ciphers in the input
cannot be used to distinguish between (sub-components of)
their plaintexts, and since the output set is uniformly shuffled.
This is true even if the adversary perturbs onion ciphers prior
to passing them to an honest party (by CCA security), which
in-essence denies service to the corresponding query.

Online Stage The client-side online protocol is shown in
algorithm 3. The server-side online stage (algorithm 4) is
structured similarly to the offline stage. However, it requires
going through the chain of servers twice. The first phase (steps
1-4) moves from the clients to the backend server, where
every server incrementally reconstructs the values of received
queries using the stored secrets (steps 1-2), and injects its
noise queries into the running set of queries (step 3). The
second phase moves in the opposite direction (steps 5-6), with

Algorithm 4 Server s; Online Stage

State at s;: The mapping M, list L, and noise histogram A\
stored from the offline stage.

Input from s; 1 or clients if j = 1: A list of queries (},1}).
Output to sj_1 or clients: A list of responses rj. correspond-
ing to each query i.

1. Anonymous Secret Lookup: For every received query
(t3,1;), the server finds M([r;] = (¢}, 1, %],y €}).
2. Query Handling: For every received query, the server
1 1 I 1l
Rec 3 our scheme's inesenLpal resotr oo fncton

If j <m:

3. Noise injection: The server makes output queries per
stored noise histogram A/, using the stored list of anony-
mous secrets L and the client’s online protocol. By con-
struction, there are exactly as many secrets in L as overall
queries in A/.

4. Shuffling and Forwarding: The server shuffles all out-
put queries, both real and noise, and sends them over to
the next server s, 1. The server waits until she receives
the corresponding responses from s; 1, and de-shuffles
them using the inverse permutation.

5. Response Handling: Received responses correspond-

ing to noise queries generated by this server are dis-

.. . l

carded. For every remaining received response r (IRE
N )

the server computes the output response r; = r ; +

e? mod 2%.

6. Response Forwarding: The server sends all output re-
sponses r; to s;_1, or the corresponding client ¢; if j = 1.

If j=m:

7. Response Lookup: The backend server does not need to
inject any noise or shuffle. By construction, step (2) com-
putes (L, g") for each received query. The backend finds
the corresponding T'[¢'] = (v',6"). If ¢' was not found in
the database (because a malicious party mishandled it),
we return an arbitrary random value.

8. Response Handling: The backend computes responses

r§ =W:io)+ eé- mod 2?, and sends them to 5;_;.

every server removing responses to their noise queries, and
incrementally reconstructing the received responses, until the
final value of a response is reconstructed by its corresponding
client. The backend operates differently than the rest of the
servers (steps 7-8). It computes the reconstructed query set,
and finds their corresponding responses in the database via
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direct look-ups. The backend need not add any noise queries,
which alleviates the need for shuffling at the backend.

Discussion The security of both offline and online stages
rely on the same intuition. First, an adversary that observes
the input and output sets of an honest server should not be able
to link any output message to its input. Second, the adversary
must not be able to distinguish outputs corresponding to real
queries from noise injected by that server.

The honest server shuffles and re-randomizes all its in-
put messages, which guarantees that the adversary cannot
link input and output messages. In the offline stage this re-
randomization is performed with onion-decryption, while the
online stage performs it using our non-malleable incremental
reconstruction and additive secret sharing for its two phases
respectively. We do not need to use a non-malleable secret
sharing scheme for response handling, since the adversary
cannot observe the final response output, which is only re-
vealed to the corresponding client, and thus cannot observe
the effects of a perturbation.

Shuffling in the noise with the re-randomized messages
ensure that they are indistinguishable. A consequence of this
is that a server cannot send out any output message until it
receives the entirety of its input set from the previous server
to avoid leaking information about the permutation used. Idle
servers further along the chain can use this time to perform in-
put independent components of the protocol, such as sampling
the noise, building and encrypting their anonymous secrets,
or sampling a shuffling order.

A malicious server may deviate from this protocol in a vari-
ety of ways: it may de-shuffle responses incorrectly (by using
a different order), attach a different tag to a query than the one
the offline stage dictates, or set the output value corresponding
to a query or response arbitrarily (including via the use of
an incorrect pre-share). The offline stage does not provide a
malicious server with additional deviation capability: any de-
viation in the offline stage can be reformulated as a deviation
in the online stage, after carrying out the offline stage hon-
estly, with both deviations achieving identical effects. Finally,
a backend server may choose to provide incorrect responses
to queries by ignoring the underlying database.

Each of these deviations has the same effect: the non-
malleability of both our sharing scheme and onion encryp-
tion ensures that mishandled messages reconstruct to random
values, and mishandled responses will not pass client-side
verification unless the adversary can forge signatures. In ei-
ther case, the affected clients will identify that the output they
received is incorrect and reject it. Ergo, servers can only use
this approach to selectively deny service to some clients or
queries. A malicious frontend can deny service to any desired
subset of clients since it knows which queries correspond
to which clients, a malicious backend can deny service to
any number of client who queried a particular entry in the
database, and any server can deny service to random clients.
The backend and frontend capabilities cannot be combined

Algorithm 5 Ideal Functionality F

Input: A set of queries ¢', one per client, the underlying
database T : K — (V,X), and privacy parameters €,3, §.
Output: A set of outputs v/, one per client, either equal to the
correct value or L.

Leakage: A noisy histogram # revealed to s,,,.

1. if 51 is corrupted, ¥ receives a list of client identities
from the adversary. These clients are excluded from the
next steps, and receive L outputs.

2. F reveals the noised histogram H = Hpopest + N to
the backend server s,,, where Hpopest 1S the histogram
of queries made by honest clients not excluded by the
previous step, and A is sampled at random from the
distribution of noise ¥(€, 8, 0).

3. if the backend is corrupted, F receives a list of counts
c; for every entry in the database k;, and outputs L to
c;-many clients, randomly chosen among the remaining
clients that queried k;.

4. if any server, other than s,, and sy, is corrupted, ¥ re-
ceives a number c, and outputs L to c-many clients, ran-
domly chosen among the remaining clients.

5. if s is corrupted, F receives an additional list of client
identities to receive L.

6. F outputs V' such that T[¢'] = (', c") for every client i
not excluded by any of the steps above.

even when colluding since at least one honest server exists be-
tween the frontend and backend. These guarantees are similar
to those of Vuvuzela [77] and many other mixnet systems.

Formal Security We rigorously specify our security guar-
antee in Theorem |, which refers to the ideal functionality
defined in Algorithm 5. The ideal functionality formalizes our
notion of “selective” abort. In particular, it formalizes capabil-
ities of the adversary to deny service to a specific query based
on at most one of its value or its origin client. A construction
for the simulator and proof for Theorem | are available in the
full version of this work [4].

Theorem 1 (Security of our protocol I1). For any set A of
adversarial colluding servers and clients, including no more
than m — 1 servers, there exists a simulator S, such that for
client inputs q', ...,q%, we have:

WEWRea]a_I,A, (C]l ) aqd)) ~ wewldeal(?-ﬂsa (QI 3 7qd))

Differential Privacy Our security theorem contains leakage
revealed to the backend server in the form of a histogram
over queries made by honest clients and honest servers. Our
privacy guarantees hinge on this leakage being differentially
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Algorithm 6 Noise Query Sampling Mechanism (€, 8, 0)

Input: The size of the database |T'|, privacy parameters €, J,
and the number of protected queries ¢.

Output: A histogram A over T representing how many noise
queries must be issued for each database entry.

1. Clamping threshold B := ‘CDFL_a;zlace(O,Zq)/S)(g)|'

For every i € |T|:
2. Sample &-DP Laplace noise: u; « Laplace(0, %)
3. Clamp negative noise: v := max|0, B+ min(B,u;)]).

4. A[i] = floor(u})

private, which entails adding noise to that histogram from a
suitable distribution. Algorithm 6 shows the mechanism each
server uses to sample the noise queries A/, and we prove that it
indeed achieves (g, 8)-differential privacy in our full paper [4].
Step (2) is a Laplace substitution (g,0)-DP histogram release,
which may produce negative values. Step (3) ensures values
are non-negative by clamping into [—B, B] and shifting by B,
where B is carefully selected in (1) to yield a privacy loss of
exactly 8. Table 3 shows the expected number of noise queries
per server and database element for different € and 8.

6 Scaling and Parallelization

Existing PIR protocols can be trivially scaled over additional
resources, by running completely independent parallel in-
stances of them on different machines. This approach is not
ideal for our protocol: each instance would need to add an
independent set of noise queries, since each reveals an inde-
pendent histogram of its queries. Instead, our protocol is more
suited for parallelizing a single instance over additional re-
sources, such that only a single histogram is revealed without
needing to add ancillary noise queries.

In a non-parallel setting, the notions of a party and a server
are identical. For scaling, we allow parties to operate mul-
tiple machines. These machines form a single trust domain.
This maintains our security guarantees at the level of a party.
Particularly, the protocol remains secure if one party (and all
its machines) is honest. Machines owned by the same party
share all their offline secret state and the noise queries they
select. '

A machine m{ belonging to party j communicates with
a single machine m/ ' and m/™" from the preceding and
succeeding parties, in order to receive inputs and send outputs
respectively. The machine also communicates with all other
machines belonging to the same party j for shuffling.

Distributing Noise Generation Our protocol generates
noise independently for each entry in the database, we can

parallelize the generation by assigning each machine a subset
of database entries to generate noise for, e.g. m] is respon-
sible for generating all noise queries corresponding to keys
{k| k % j = 0}. This distribution is limited by the size of
the database. If parallelizing the noise generation beyond this
limit is required, an alternate additive noise distribution (e.g.
Poisson [75]) can be used instead, which allows several ma-
chines to sample noise for the same database entry from a
proportionally smaller distribution.

Distributed Shuffling Machines belonging to the same
party must have identical probability of outputting any input
query after shuffling, regardless of which server it was initially
sent to. An ideal shuffle guarantees that the number of queries
remains uniformly distributed among machines after shuf-
fling. We choose one that requires no online coordination to
ensure it maintains perfect scaling. Machines belonging to the
same party agree on a single secret seed ahead of time. They
use this shared seed locally to uniformly sample the same
global permutation P using Knuth shuffle. Given a total batch
ixl . (i+l)l]’

of size [, each machine ml] need only retain P] el
which determines the new indices of each of its input queries.
The target machine that each query g should be sent to can
be computed by P[q]%%. This algorithm performs optimal
communication % per machine but requires each machine to
perform CPU work linear in the overall number of queries to
sample the overall permutation. This work is independent of
the actual queries, and can be done ahead of time (e.g. while
queries are being batched or processed by previous parties).

Distributing Offline Anonymous Secrets We require all
machines belonging to the same party to share all secrets
they installed during the offline stage, so that any of them
can quickly retrieve the needed ones during the online stage.
Maintaining a copy of all secrets in the main memory of each
machine may be suitable for smaller applications. At larger
scales, it may be more appropriate to use shared key-value
storage or in-memory distributed file system [8,51,62,81].

7 Evaluation

Experiment Setup Our various experiments measure the
server completion time for a batch of queries. For the online
stage, this is the total wall time taken from the moment the
first server receives a complete batch ready for processing,
until that batch is completely processed by the entire protocol,
and its outputs are ready to be sent to clients. For the offline
stage, the measurements start when the complete batch is
received by the first server, and ends when all servers finished
processing and installing the secrets. Measurements include
the time spent in CPU performing various computations from
the protocol, as well as time spent waiting for network 10 as
messages get exchanged between servers. Our measurements
do not include client processing or round-trip time.

All experiments in the paper use € = 0.1 and & = 1079,
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Keys and values in our database are each 4 bytes, with sig-
natures that are 48 bytes long (e.g. BLS [16]). We ran our
experiments on AWS r4.xlarge instances that cost around
$0.25 per hour, using only one thread. A primary factor in
selecting these instances is RAM, since we need sufficient
memory to store large query batches. We implemented our
protocol using a C++ prototype with about 6.1K lines of code.
Our prototype relies on libsodium’s crypto_box_seal [33]
for encryption. Our code is available on GitHub [34].

Scaling Figures 3 and 4 show how our protocol scales with
the number of queries and database size, respectively. Our
runtime is dominated by noise queries when the number of
queries is smaller than the size of the database, and begins to
increase with the number of queries as they exceed it. For a
large enough number of queries, our runtime scales linearly
as the overhead of noise queries is amortized away over the
real queries. Our noise overhead scales linearly with the size
of the database. The cost of processing any input query in
isolation (without noise) is constant and does not depend on
the database size, which only affects the number of noise
queries added by our protocol. The offline stage is about 500x
more expensive than our online stage. This is expected since
the offline stage performs a public key operation for each
corresponding modular online arithmetic operation.

Figure 5 shows how our protocol scales with the number
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Figure 5: Completion time for varying number of parties with
100K queries against a 10K database

. Server time (seconds)
Machines / Party Offline ‘ Online
1 5010 11
2 2560 8.2
4 1296 4.0
8 664 2.2

Table 2: Horizontal scaling with 1M queries and a 100K DB

of parties. Our protocol is most efficient when only two par-
ties are involved. When the number of parties increases, a
query has to pass through more servers as it crosses the chain.
This is more pronounced in the offline stage, as it additionally
increases the size and layers of each onion cipher, causing
the offline stage to scale super-linearly in the number of par-
ties. In addition, each server naively adds the full amount of
noise queries required to independently tolerate up to m — 1
corrupted parties. Adding less noise by relying on additional
assumptions (e.g., honest majority) is an open problem, which
can help improve our scaling with the number of parties, and
can have important consequences to mixnets, the DP shuffling
model, and DP mechanisms in general. Techniques such as
noise verification [53] may be useful to ensure that (partial)
noise generated by an honest server is not tampered with by
future malicious servers.

Table 2 demonstrates how our protocol scales horizontally.
Parallelizing the online stage primarily parallelizes communi-
cation. However, parallel shuffling introduces an additional
round of communication per party. As a result, our online
stage speed up when using 2 machines is not 2x. We exhibit
linear speedups as the number of machines exceeds 2.

Finally, the expected number of noise queries added per
database element is a function of € and J. Table 3 lists this
expected number for various combinations of € and 8. The
expectation increases linearly as € decreases but scales better
with 8. This means that the amount of noise overhead (and
thus the number of queries required for that overhead to amor-
tize effectively) grows linearly with é Our protocol trades
security for performance. It can efficiently amortize the cost
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S~E| 1 01 0.01 0.0001
1075 | 23 230 2302 23025
107 | 27 276 2763 27631
1077 | 32 322 3223 32236

Table 3: Expected number of noise queries B per database
element as a function of different € (columns) and & (rows)

of independent queries due to its relaxed DP security guar-
antees. As € becomes smaller, this relaxation becomes less
meaningful, as the DP security guarantees approach those of
computational security. While linear scaling with é appears
to be intrinsic to our protocol, we believe it may be possi-
ble to reduce the scaling constant, by using different basis
distributions that are inherently non-negative or discrete (e.g.
Poisson [75] or Geometric [61]), or by adapting recent work
on privacy amplification [27,36] that achieves the same level
of privacy using less noise with oblivious shuffling.

Latency Latency in Checklist and similar systems includes
the computation cost of a single query in isolation (which is
low), and any queuing delays experienced by the query after
its arrival if the computational resources are busy handling pre-
vious queries. This delay depends on the rate at which queries
come in, and can be significantly larger than the batching
overheads in applications with a large query load. In contrast,
our protocol is primarily throughput oriented and its latency
is a secondary concern determined by two components: the
idle waiting time required to collect the batch of queries from
different clients, which we call the batching window, and the
active processing time of that batch after collection. The first
component depends on the configuration. The later compo-
nent is precisely the total computation time measured in the
various experiments in earlier parts of the paper. Lowering the
batching window beyond a certain point can have a negative
impact on latency (and even throughput), since it can result in
smaller batches dominated by noise where amortization is not
effective. Furthermore, it can introduce queuing delays at the
level of batches, where a previous ongoing batch still occupies
system resources after the next batch has been collected.

We analyze DP-PIR’s latency and the effects of the batch-
ing window in our full paper [4]. We summarize three impor-
tant observations: (1) Queuing delays in existing systems are
significant and can cause them to exhibit latency worse than
DP-PIR with a large number of queries. (2) Both DP-PIR and
existing systems can be scaled horizontally to exhibit lower
latency. Traditional PIR protocols can achieve sub-second la-
tencies if given enough resources, but this can be prohibitively
expensive when the query rate is high. (3) For our target large
query loads, DP-PIR can be configured to exhibit decent la-
tency with a much lower budget than existing systems.

The Offline Stage PIR protocols with an offline stage typ-
ically do so to improve their online latency, which is less

critical in our target applications. It is possible to combine
both DP-PIR stages into a single stage that performs onion-
encryption of the query directly, without the need to install
anonymous secrets. This combined protocol would exhibit
similar trends to our current design, but will be around two
orders of magnitude slower than our online protocol on its
own. A fair comparison here must also account for the of-
fline cost of existing protocols, which can be significantly
larger than our offline cost. For example, Checklist relies on
an expensive per-client offline stage linear in the size of the
database, which we observe takes up to 7 seconds per client
in our experiments. In DP-PIR, the offline cost for a single
query amortizes to a few milliseconds. One key difference is
that a client can reuse the hint produced by Checklist’s offline
stage to make many following queries, rather than a fixed
number of queries in DP-PIR. However, the hint becomes
invalid whenever the database is updated. Checklist provides
an updatable offline construction, where a single update to the
database can be carried over to a previous offline computation
in cost logarithmic in the database size.

We believe the that the offline-online design provides bet-
ter deployment cost and performance, and allows DP-PIR to
meet the availability and liveness requirements of many ap-
plications, including our App store example. Concretely, the
offline-online design allows greater control over the batch-
ing window, which governs the effectiveness of amortization,
client latency, and the duration needed for updates to the
database to become visible to clients at the next batch. For
example, it may be desirable to allow clients to query the App
store multiple times a day, e.g. every hour, in order to discover
important app updates earlier. A natural way to achieve this is
to use a batching window of one hour or less. However, this
is only effective if this window includes sufficient queries for
amortization, and has sufficient time to complete processing
before the next batch. The offline setup lowers both require-
ments, making smaller windows practical (or alternatively,
cutting the online cost of the same window by 500x).

The offline stages for multiple online stages can be pooled
together and executed ahead of time. Clients can choose to
issue less queries than they signed up for in the pooled offline
stage without privacy loss. Service providers can use this to
execute the combined offline stages during off-peak hours
when resources are cheaper (e.g. overnight). Furthermore,
providers can use different setups for each stage to optimize
the effectiveness of their budget. The offline stage is CPU-
intensive due to its public key operations, while the online
stage is entirely network bound.

8 Related Work

Section 2 discusses existing work on Private Information
Retrieval. Here, we discuss related work from other areas.

Mixnets Traditional mixnets [24] consist of various parties
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that sequentially process a batch of onion-ciphers, and out-
put a uniformly random permutation of their corresponding
plaintexts. Various Mixnet systems [12,37] add cover traffic
to obfuscate various traffic patterns. However, ad-hoc cover
traffic is shown to leak information over time [60].

Recent work mitigates this by relying on secure multiparty
computation [5] or differential privacy. Vuvuzela [77] adds
noise traffic from a suitable distribution to achieve formal
differential privacy guarantees over leaked traffic patterns,
and Stadium [75] improves on its performance by allowing
parallel noise generation and permutation. Similar techniques
have been used in private messaging systems [53], and in
differential privacy models that utilize shuffling for privacy
amplification [36] or for introducing a shuffled model that lies
in between the central and the local models [27].

Differential Privacy and Access Patterns Using differ-
ential privacy to efficiently hide access patterns of various
protocols has seen increasing interest in the literature. e—PIR
relaxes the security guarantees of PIR to be differentially pri-
vate [72] in the semi-honest setting. Their two AS schemes
are closest to our protocol: they require clients (rather than
servers) to generate noise queries along with their real queries,
and send all of them through an anonymous network for mix-
ing. When the number of clients is large enough, this can
amortize the number of queries any of them have to generate
to a constant. However, this approach generates far more total
load on the system. For example, in our app store example
with 2 servers, a 2.5M database, and 3B clients, each client
needs to generate 282 noise queries to hide a single query
with € = 0.1, which results in close to 850B queries to the
system in total, compared to the < 4B total load on our system
(but with 8 = 107% £ 0). These constructions do not provide
integrity guarantees, and will require further noise queries to
protect against potential malicious or unavailable clients.

Others relax the security of Oblivious RAM (ORAM), a
primitive where a single client obliviously reads and writes
to a private remote database [38,39], to be differentially pri-
vate. Extensions of ORAM address multi-client settings [59].
Differentially oblivious RAM [23, 78] guarantees that neigh-
boring access patterns (those that differ in the location of a
single access, i.e. event-DP) occur with similar probability.
DP access patterns have been studied for searchable encryp-
tion [25] and generic secure computation [61].

Secret Sharing Shamir Secret Sharing [70] allows a user
to split her data among n parties such that any ¢ of them can
reconstruct the secret. Secret sharing schemes with additional
properties have been studied for use in various applications.
Some schemes, such as additive secret sharing, allow the se-
cret to be reconstructed incrementally by combining a subset
of shares of size k into a single share that can recover the orig-
inal secret when combined with the remaining n — k shares.
Non-malleable secret sharing schemes [9, 40] additionally
protect against an adversary that can tamper with shares, and

guarantees that tampered shares either reconstruct to the orig-
inal message or to some random value. Aggarwal et al. [2]
show generic transformations to build non-malleable schemes
from secret sharing schemes over the same access structure.

9 Conclusion

This paper introduces a novel PIR protocol targeted exclu-
sively at applications with high query rates relative to the
database. This focus is intentional and necessary: DP-PIR
handles large batches so well specifically because it handles
small ones poorly. Our construction makes PIR usable in
scenarios that were previously impractical or unexplored. DP-
PIR is primarily geared towards amortizing total server work
(i.e. throughput), but not for sub-second client latency, and
only provides relaxed differential privacy guarantees.

The performance of DP-PIR is closely tied to its configura-
tions, which determine the number of noise queries generated
by our system, and thus the number of queries required to
amortize their overheads effectively. Our experiments meet
or extend beyond standard configurations suggested by ex-
isting work. Checklist [47] supports exactly two parties, and
PIR schemes are rarely instantiated with more than three. For
small databases (e.g. n < 100K), the naive solution of sending
the entire DB to the client may be desirable. Vuvuzela [77]
recommends € € [0.1,In(3)] and sets § = 107, and other
work [61,72] also mostly focuses on € > 0.1.

The ratio of queries to database size £ is the primary per-
formance criteria that governs how effective DP-PIR is com-
pared to existing protocols. Within the space of typical con-
figurations outlined above, our experiments demonstrate that
applications with % < %0 are unsuited for DP-PIR, while appli-
cations with 4 > 10 are almost always guaranteed to exhibit
speedups of several folds when using DP-PIR. Applications
with ratios in [, 10] may or may not be suited to DP-PIR,
depending on their exact configurations. For example, we can
achieve better performance than existing work for a ratio of
0.8 when the database size is 2.5M, but not when it is of size
1M (section 2). Thus, such applications require individual
analysis to determine the best way to realize them.

Our protocol shifts expensive public key operations to an
offline stage. This allows for more flexibility over the batching
window to meet application requirements, and a more efficient
allocation of computational resources. However, applications
were these factors are not a concern may elect to combine the
two stages into a single one, that still exhibits similar trends
to our online stage, but is about two orders of magnitude
more expensive. Finally, these ratios, and the number of noise
queries, also depend on the level (and duration) of protection
offered to users (e.g. event-DP vs user-time-DP) as expressed
by ¢. DP-PIR intentionally relaxes its guarantees for increased
performance. This relaxation becomes less meaningful as €
and ¢ approach perfect security.
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A DPF and SealPIR

The setup and parameters in both comparisons below is iden-
tical to section 2.

DPF Boyle, Gilboa, and Ishai [18] propose a PIR proto-
col based on distributed point functions (DPF). Unlike the
offline-online protocol introduced in Checklist that uses punc-
tured pseudorandom sets, DPF requires linear work in the
database size to handle user queries. However, DPF requires
no offline preprocessing and significantly lower client com-
putation and communication than checklist. We compare our
system to the DPF implementation provided as an alternative
backend for checklist based on the optimized implementa-
tion of Kales [46]. Figures 6 and 7 show our results. For
a database with 100K elements, DPF outperforms DP-PIR
when the number of queries is small relative to the size of
the database. When the number of queries g approaches 31K,
with 2 = 0.0124, the two systems exhibit identical comple-
tion time, with DP-PIR significantly outperforming DPF as
the number of queries grow beyond that.

SealPIR Figures 8 and 9 show similar results for SealPIR.
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Figure 8: SealPIR and DP-PIR Total completion time (y-axis,
logscale) for varying number of queries (x-axis, logscale)
against a 10K database
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Figure 9: The ratios of queries/database (y-axis) after which
DP-PIR outperforms SealPIR for different database sizes (x-
axis, logscale)

In the first experiment, we use a database size of only 10K
elements, and find that DP-PIR outperforms SealPIR at rel-
atively few queries (around 32) with a ratio £ of just 0.003.
Similarly, we achieve 2x, 5x, and 10x speedups for modest
ratios all below 0.02. These ratios decrease as the database
size grows, similar to our experiment with Checklist. We out-
perform SealPIR with far fewer queries than we do Checklist
and DPF, in large part because SealPIR’s uses expensive ho-
momorphic operations during its online stage, while checklist
offloads expensive linear work to an offline stage. Our pro-
tocol goes even further, only executing a couple of modular
arithmetic operations per query online.
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