
Sniffer: Surfacing Dangerous Unsafe

Code in Rust

Corinn Tiffany

Advisor: Malte Schwarzkopf

Reader: Will Crichton

Department of Computer Science

Brown University

Providence, RI

April 2025

Contents

Acknowledgments 4

Abstract 5

1 Introduction 6
1.1 Problem Statement . 6

1.2 Example Scenario . 7

1.3 Contributions . 8

2 Background & Related Work 9
2.1 Background on Rust . 9

2.2 Related Work . 10

2.3 Alternative Approaches to Uphold Bonus Properties 11

3 Safety Challenges for Rusty Systems 14
3.1 Scoping Safety . 14

3.2 Sesame: Leaking Private Data . 14

3.3 RedLeaf: Violating Kernel Subsystem Isolation 17

3.4 Other Systems . 18

3.5 Summary . 18

4 Sniffer Design 20
4.1 Overview . 20

4.2 Analysis . 20

5 Implementation 24

6 Case Studies 25
6.1 Sesame . 25

6.2 RedLeaf . 25

6.3 dryoc . 26

6.4 ufmt & bitter . 26

7 Evaluation 27
7.1 Encapsulation Violations in Sesame . 27

7.2 Interior Mutability in RedLeaf . 29

7.3 Unsafe Code in dryoc . 30

7.4 Panic Freedom in ufmt & bitter . 30

8 Discussion 32

2

9 Conclusion 33

References 34

3

Acknowledgments

To Malte, for your mentorship and friendship. You’ve made an immeasurable impact on

me as a learner, a writer, a problem solver, and a good-science-doer. Though my chapter

at Brown has come to a close, what I’ve learned from you is here to stay.

To Will, for lending your boundless Rusty knowledge, good humor, and crisp writing. The

future Rustaceans of Brown are lucky to have you.

To Kinan (Professor-Doctor-Sensei Dak Albab), for adoptingme as your karate kid in train-

ing. Thank you for teaching me about the finer things in life, e.g., marking functions as

pub(crate) and mortar-and-pestle pesto. You’ll make a fantastic professor, and I can’t wait

to see your future students thrive.

To Artem, for coffees in the courtyard and pointing out our matching haircuts. Here’s to

many walks after class, and more to come in new locations. Sniffer wouldn’t be the same

without you, and neither would my time at Brown.

To the rest of the Sniffer team: Philip Levis, Akshay Narayan, Deepti Raghavan, Ziyun

Song, and Isabella Szabo. I’ve learned so much from you, and I’m excited to continue this

journey.

To my lovely friends, particularly Aijah Garcia, for being my first friend at Brown, and

the housemates of 25 East—Aidan Harbison, Susanne Kowalska, Kenny Daici, and Angel

Benjamin—for being the best late-night-chatters and snowball-throwers.

To the rest of ETOS, in particular the Sesa-team and the ETOS girlies. You were first my

role models, and then my wonderful friends, too.

To my parents and Maquelle, for your endless encouragement, love, and curiosity.

4

Abstract

Over the past decade, systems researchers have leveraged Rust to build systems with valu-

able security or isolation properties. In this thesis, we explore how unsafe code in de-

pendencies can cause serious violations of the guarantees these Rusty systems seek to

provide—even in the ideal case, where all unsafe code is free of undefined behavior. We

present Sniffer, a static analysis tool to help developers audit their systems for guarantee-

breaking unsafe code. We evaluate it on real systems and libraries, and we find that Sniffer

reduces the audit burden to check that a codebase upholds properties such as the absence

of interior mutability, encapsulation of structs, and panic freedom. Sniffer can help devel-

opers fulfill the promise of strong guarantees in the presence of unsafe code.

5

1 Introduction

Rust is an exciting programming language for systems research because it has the perfor-

mance characteristics of languages like C++, but also offers guarantees about properties

such as memory safety. Over the last decade, many systems have used Rust to provide

guarantees such as crash safety [28], data integrity [10, 29, 32, 35], and data privacy [15,

26]. Valuable features like memory safety, encapsulation, immutable references, and data

race freedom [42] form the foundation for these higher-level guarantees.

However, these properties only hold in Rust without any unsafe code; in unsafe blocks, the

compiler doesn’t enforce all the same properties that it usually does, so a developer can

perform, e.g., raw pointer dereferences. A common refrain among Rusty research systems

is caveats for unsafe code that their authors correctly establish. Papers often state that their
system’s guarantees only apply in the “safe subset of Rust,” because in unsafe blocks, the

compiler will not check the properties upon which these systems depend. However, it is

rarely clear what exactly constitutes the “safe subset,” e.g., whether libraries must also con-

sist entirely of safe code. In this thesis, we discuss the problems that arise when trying to

rely on such properties in real-world programs that contain unsafe code in dependencies.

We introduce Sniffer, a static analysis tool to help developers surface information on the

properties of their program and maintain guarantees in the face of unsafe code.

1.1 Problem Statement

The ambiguity of “safe” Rust becomes particularly pertinent in the face of what we call

bonus properties: certain properties, such as encapsulation of private fields and immutabil-

ity of references, are enforced by the compiler in programs without any unsafe code, but

can still be broken in valid unsafe code. This is because the sole requirement Rust imposes

for unsafe code is to not cause undefined behavior [43].

In practice, most Rust programs use unsafe code abstracted away in library calls [21].

While much of this unsafe code preserves bonus properties, there is neither a guarantee

nor an expectation that any given unsafe block does so. This mismatch is the source of

the central tension Rusty research systems must navigate: many systems rely on Rust’s

bonus properties, but neither the Rust compiler nor convention around unsafe code en-

sures these properties are upheld, even when a system developer never writes an unsafe

block themselves.

In this thesis, we seek to bridge the gap between theoretical guarantees that hold in the

absence of unsafe code and the reality of Rust programs that cannot avoid it.

6

1.2 Example Scenario

Imagine the following: a system designer identifies that a bonus property, such as encapsu-

lation, is normally enforced in safe Rust, and builds a system atop this property. Their goal

is to provide strong guarantees about the behavior of their system, even when it accepts

user-provided extension code. For example, Sesame [15] is a a system for privacy compli-

ance in web applications and supports custom HTTP handler code, and RedLeaf [32] is a

operating system that seeks to provide lightweight subsystem isolation and supports load-

able kernel extensions. The system developer states that their bootstrapped guaranteeswill

hold for extensions written in “safe Rust.”

When a user of the system goes to write an extension that interfaces with this system,

they read the caveat about unsafe code, and they attempt to ensure that their program

meets this restriction. First, they use the forbid_unsafe lint [48] to disallow unsafe code

in their own crate, that is, their Rust library or package. However, the system user is aware

that their programmay invoke unsafe code in libraries. Unsafe code is a critical component

of the Rust ecosystem; it is frequently used to interact with hardware, to implement low-

level performance optimizations, and to improve expressivity when the borrow checker

is overly restrictive. In the best case, this unsafe code will be correctly implemented and

free of undefined behavior. To confirm that their program does not have memory bugs or

undefined behavior, they follow best practices by using tools like Miri [38], Kani [51], and

Rudra [6].

However, there is a catch—existing tools that target the absence of undefined behavior will

not help the developer if some unsafe code inadvertently breaks the higher-level guaran-

tees of the system. This is because violating bonus properties does not constitute undefined

behavior, nor is upholding them relevant to all systems, given that violating bonus prop-

erties can be useful to improve expressivity, e.g., interior mutability via RefCell. Even in

the ideal case, where all unsafe code is free of bugs, unsafe code deep in dependencies may

violate bonus properties, and in turn, a system’s intended higher-level guarantees.

In addition to guarantees derived from bonus properties, developers often seek to uphold

other properties, such as panic freedom in utility libraries [8, 9, 47], or the minimization

of unsafe code in a cryptography library [19].

Tools such as Cargo Scan [53] and Cargo Geiger [12] can help a developer audit a whole

codebase for unsafe code by finding any unsafe code in a crate or its dependencies. How-

ever, this returns thousands of functions to audit, many of which are unreachable, and

among the reachable unsafe code, much of it is irrelevant to bonus properties or panics.

This limits the utility of these tools for auditing for panics, unsafety, or violations of bonus

properties.

Consequently, developers lack practical tooling to navigate the unsafe code their program

invokes and to understand the interactions between this unsafe code and the bonus proper-

7

ties upon which a Rusty system may depend. Sniffer is a new developer-oriented auditing

tool that seeks to fill this gap by precisely finding reachable unsafe code, and reducing the
effort to audit these results by automatically filtering them for a system-specific property.

We call this approach property-targeted auditing. Sniffer’s goals are as follows:

1. Support configurable analyses based on bonus properties and application-specific

constructs;

2. Be as precise as possible, i.e., never skip a region of concern and minimize false

positives;

3. Be efficient and easy to use.

1.3 Contributions

This thesis makes the following contributions:

1. We propose a more precise vocabulary for talking about safety of Rust code, and sur-

vey published research systems whose guarantees are vulnerable even when users

write only “safe Rust” (§3).

2. We design and implement Sniffer, a static analysis tool to aid property-targeted au-

diting (§4).

3. We use Sniffer to audit five crates which seek to provide panic-freedom, minimal

unsafe code, and higher-level guarantees bootstrapped from bonus properties (§7).

This workwas done in collaborationwith others from the Sniffer team: ArtemAgvanian, Ziyun
Song, Kinan Dak Albab, Will Crichton, Philip Levis, Akshay Narayan, Deepti Raghavan, and
Malte Schwarzkopf.

8

2 Background & Related Work

2.1 Background on Rust

Safety. In C and C++, it is largely the programmer’s responsibility to avoid writing code

with undefined behavior. Rust shifts a significant portion of that responsibility onto the

compiler by limiting code that can have undefined behavior, such as calling into other

languages or pointer arithmetic, to explicit unsafe blocks. In Rust, the compiler enforces

certain safety properties–including absence of undefined behavior–for safe code, which is

the majority of Rust code.

Programmers are responsible only for ensuring unsafe code doesn’t cause undefined be-

havior. For example, if a function uses an unsafe block to perform pointer arithmetic, the

programmer is responsible for checking pointer alignment and bounds.

The absence of undefined behavior outside of unsafe blocks is Rust’s only guarantee. As of
May 2025, Rust does not have a formal reference semantics, so today undefined behavior

is defined as a list of problem behaviors [7] familiar to systems programmers, such as

accessing a dangling pointer, causing a data race, or violating LLVM’s pointer aliasing

rules. In practice, developers use Miri [38] to detect the presence of undefined behavior in

their programs.

Safe Interfaces and Safety Comments. Developers can encapsulate unsafe blocks

within safe functions, creating safe interfaces. Without reviewing the source code, devel-

opers cannot distinguish calls into safe interfaces from those into an exclusively safe Rust

implementation. This is deliberate, since it allows for a separation of concerns: library de-

velopers can, e.g., use unsafe code to optimize performance, while application developers

need not know the details of the unsafe optimization, provided it is implemented correctly.

A study of the 500 most-used Rust crates found that more than half call into unsafe code,

even when excluding calls into standard library safe interfaces [21].

When a function itself is marked as unsafe, the unsafe label propagates to the caller, and

the developer calling the unsafe function must ensure their invocation will not cause un-

defined behavior in their program. The Rust community has developed a convention of

writing safety comments for unsafe functions, e.g., in the standard library [39]. These com-

ments document the invariants and preconditions under which the unsafe function is free

of undefined behavior. This is meant to help client code use these APIs safely, and to make

maintenance of the unsafe code easier.

There is a growing body of sociotechnical work describing how Rust programmers use

unsafe code. They find that even though the developers strive to keep unsafe code local-

ized and simple, it is nevertheless used extensively [5, 21]. Studies also indicate that the

majority of developers lack confidence in the correctness of their safe interface implemen-

9

tations [30] and that exposed unsafe library functions often fail to document their required

preconditions [5]. This complicates the ideal that unsafe code within safe interfaces up-

holds the same guarantees as compiler-checked safe code, even when it comes to absence

of undefined behavior.

Bonus Properties. When a function f is globally safe, Rust also enforces useful prop-

erties that go beyond absence of undefined behavior. For example:

• Encapsulation: f can never directly read or write private fields of structures outside

the module of f .

• Lifetimes as aliases: If f contains a reference of type &’a T, then it is possible to

soundly approximate the reference’s aliases from the lifetime ’a.

• Immutability of references: If f contains an immutable reference of type &’a T, then

all data accessible through the reference will never mutate during the lifetime ’a.

We call these bonus properties because while they often serve as a basis for higher-level

system guarantees, valid unsafe Rust can violate them. The optional status of these proper-

ties is an intentional choice on the part of the Rust language developers; allowing unsafe

code to violate them increases the expressivity of the language. Mutexes, for example,

break the immutability property: multiple threads can each hold an immutable reference

to share data through the mutex, allowing them to modify the protected data while using

the lock to prevent data races.

We have found that Rusty systems often bootstrap guarantees from the properties of en-

capsulation and immutability of references, and real-world crates seek to uphold panic-

freedom. Sniffer can surface violations of these properties, as well as panics and invoked

unsafe code, providing developers with the means to check that their code upholds the

guarantees they desire.

2.2 Related Work

Sniffer complements a rich body of related work that aims to check for undefined behavior

or verify functional correctness. We discuss alternative approaches to propagate informa-

tion about bonus properties to a system auditor in §2.3.

Detecting Undefined Behavior. Many tools aim to enforce the absence of undefined

behavior. We envision that a developer would use existing tooling to check for undefined

behavior, as well as Sniffer to check for the particular bonus properties that are critical to

their system.

Miri [38] is a Rust interpreter that identifies undefined behavior in unsafe code. Developed

alongside the Rust compiler, Miri has become the community standard for defining unde-

fined behavior. Miri detects undefined behavior as it occurs during the execution of a test

10

suite, so it can only provide guarantees for the code executions that a developer explicitly

tests.

Kani [51] is a boundedmodel checker that can detect a suite of behaviors including UB and

panics. Running Kani does not require developers to write specifications, and unlike Miri,

it finds error states that exist along any possible execution path. However, it encounters

long runtimes on large programs, and it lacks support for common Rust constructs such

as vectors and hashmaps.

Rudra [6] is a static analysis tool aimed at detecting a selection of commonmemory safety
bugs at the ecosystem scale, rather than violations of bonus properties, as Sniffer does.

Both tools conduct a suite of analyses on high-level IR (HIR) and mid-level IR (MIR) of a

Rust program and its dependencies.

Functional Correctness. There are many verification frameworks that enable formal-

izing the behavior of Rust programs. Frameworks such as Prusti [4], Creusot [17], and

Aeneas [24] emphasize safe Rust as their target language, taking Rust’s memory safety

and type system guarantees as a given. Verus [27] provides coverage for verifying the be-

havior of a subset of unsafe code. This is largely code that fails the borrow checker but

semantically follows Rust’s ownership rules, e.g., operations on raw pointers and the inte-

rior mutability primitive UnsafeCell are supported, but not transmute. Sniffer instead

targets bonus properties and is — in some cases — interested precisely in code that breaks

Rust’s ownership model.

2.3 Alternative Approaches to Uphold Bonus Properties

We discuss alternative approaches to ensure that extension code upholds the bonus prop-

erties that a system depends on, and explain how Sniffer fits into this design space. Each

strategy offers a trade-off between the strength of its validationmechanism and the burden

it places on the system, extension, and dependency developers.

Safety Comments. Library developers could extend classic safety comments with pre-

conditions under which the unsafe code upholds bonus properties (“property comments”).
Developers would informally consult these preconditions to increase their confidence that

their extensions inherit the guarantees of the bonus properties they rely on.

While safety and property comments offer a lot of flexibility, they provide no enforcement

guarantees and face two challenges in practice. First, the documented preconditions may

be incorrect or out of date—this risk can be mitigated by formalizing and verifying them.

Second, extension developers may not even be aware of these preconditions if the un-

safe function is in a deep call chain. Extension developers would benefit from tooling that

identifies and surfaces hidden unsafe code, along with its safety and property comments.

Sniffer provides the former and could be adapted to do the latter.

11

Formal Verification. In the presence of unsafe code, the Rust compiler alone does not

guarantee that extension code exhibits the bonus properties Rusty systems require. Exten-

sions could use Rust formal verification tools like Verus [27] and Kani [51] to determine

whether a system’s promised guarantees, e.g., isolation, actually hold, e.g., because the un-

safe blocks actually obey the relevant bonus properties. This may be especially important

in critical settings, such as kernel extensions in RedLeaf.

With this approach, the extension developer is responsible for verifying their codebase in

its entirety, which is too high of a burden for general use, e.g., for web developers using

Sesame. Further, support for unsafe constructs is incomplete in many verification tools:

e.g., Verus supports UnsafeCell via ghost state, but not reasoning about transmute.

We believe that verification is best aimed at critical components of the Rust ecosystem,

such as the standard library. This requires new research to extend formal contracts [3]

with descriptions of when unsafe code upholds bonus properties, and approaches to verify

the correctness of these contracts. This complements efforts to crowdsource verification

of the standard library for memory safety and absence of undefined behavior [25]. With

a carefully scoped contract language, it may be possible to create automated tools that

enforce them in extension code [11, 22, 36].

Auto Traits. The compiler automatically implements auto traits [40] for types whose

fields also implement the trait. Because the compiler and type system implement and en-

force them, they require no opt-in from extension or dependency developers. One example

of this is Rust’s Freeze trait [46], which guarantees that a type does not contain standard

interior mutability primitives, e.g., RefCell. Using Freeze, the Rust developers fixed a

critical language bug that allowed mutating data inside static constants [20].

On the other hand, using auto traits to prevent violations of bonus properties can lead to

more restrictive APIs. RedLeaf’s RRefable auto trait [32], which was intended to uphold

a “no interior mutability” invariant, is one example. RedLeaf could use Freeze to forbid

passing RefCell to subsystem invocations to prevent the broken guarantees we describe

in §3.3. The original design uses an auto trait RRefable to a similar end, but did not for-

bid using standard library interior mutability primitives. While using autotraits would

accomplish the goal of disallowing interiorly mutable types from being shared between

subsystems, this would have resulted in a restrictive API that forbid passing a RefCell in

any context – a restriction that might preclude efficient and correct designs and force less

efficient ones. In that example, a less restrictive, but correct mechanism would allow pass-

ing RefCell to the scheduler domain for read-only use, but forbid calling borrow_mut().

More broadly, a primary limitation of auto traits as a mechanism to enforce bonus prop-

erties is that they are suitable to express properties about the type itself, e.g., disallowing

interiorly mutable types, but not how surrounding code operates on that type, e.g., forbid-

ding transmute on a type that should uphold encapsulation.

12

Currently, Freeze and custom auto traits are only available on nightly Rust, but stabilizing

them would greatly benefit Rusty systems that depend on the absence of interior mutabil-

ity. Due to concerns about semantic versioning [37], the Rust developers state these fea-

tures are “unlikely to be” stabilized [18]. We note that the Send, Sync, and UnwindSafe

auto traits are stable even though they exhibit the same issues with semantic version-

ing [34, 45], and that stabilizing Freeze yields comparable benefits. One pathway to sta-

bilization is to only allow defining private auto traits, such that only the system itself can

depend on them. Consequently, minor-version changes to downstream crates would cause

compilation errors (and thus break semantic versioning) only when they violate the criti-

cal properties of the system, which is desirable. This mirrors stable Rust as of this writing,

where Freeze is private but causes semantic versioning hazards [37] precisely when crit-

ical properties, e.g., immutability of constants, are violated.

Comparison with Sniffer. Sniffer can provide stronger guarantees than safety or

property comments alone, especially in the face of deep call chains in dependencies. Auto

traits provide strong, compiler-checked guarantees. However, they can only encodewhether

a type has some property based on its component types, as they solely enforce properties

via the type system. This can be overly restrictive in some cases. Sniffer can capture a

diverse set of fine-grained properties relating to the functions invoked in a given program.

Formal verification provides stronger guarantees than Sniffer, though at the cost of vastly

increased developer effort. Sniffer places no burden on library developers and requires

some effort from the extension developer, which is proportional to how much code they

wish to audit. Furthermore, Sniffer is tailored to bonus properties, which are only partially

supported by current formal verification techniques.

Sniffer fills a gap in the design space: it can precisely express bonus properties and provide

strong guarantees with acceptable amounts of developer effort.

13

3 Safety Challenges for Rusty Systems

3.1 Scoping Safety

The phrases “safe Rust” and “safe subset of Rust” have no formal meaning within the Rust

language, but they colloquially refer to “Rust without the unsafe keyword.” These phrases,

however, are ambiguous: they could mean either “source code with no unsafe blocks,” or

“source code which does not invoke any unsafe blocks.”

To differentiate these meanings, we introduce two new terms. A piece of Rust code is lo-
cally safe if it syntactically does not contain unsafe code. A piece of Rust code is globally
safe if all reachable functions in its call graph do not contain unsafe code. Figure 1 shows

an example to illustrate the difference. Using these definitions, we can state more precisely

what Rust seeks to guarantee with safety. For any locally safe function f that passes the

Rust type checker, f cannot cause undefined behavior if and only if all unsafe code called

by f cannot cause undefined behavior. This definition helps us be more precise — the ear-

lier claim that “safe Rust code is guaranteed to be free of [undefined behavior]” is only

true if “safe” means “globally safe.”

Rusty systems often rely on bonus properties that only hold in globally safe Rust, but Rust

programs are often only locally safe. In practice, this mismatch can result in the loss of

guarantees. This mismatch might be problematic for standalone systems, but it is even

more salient for systems that embed user-provided extension code such as the systems

in Figure 2. An extension developer (who is distinct from the original system developers)

may be unaware that their extension can violate the system’s guarantees when they write

an extension that is only locally safe.

In the remainder of this section, we investigate case studies of systems that rely on bonus

properties and the types of bugs to which they are vulnerable as a result. We describe

Sesame [15] and RedLeaf [32] in detail, and give an overview of several other systems

which face similar vulnerabilities.

3.2 Sesame: Leaking Private Data

Sesame is an end-to-end privacy compliance system for Rust web applications. Application

developers declare privacy policies and associate them with data using Sesame’s API, such

as access control policies for sensitive data or k-anonymity requirements for aggregates.

Sesame ensures policies remain attached to data throughout execution and checks policies

before allowing the application to externalize the associated data, e.g., by rendering it to

users via HTML.

Sesame’s central abstraction is the Policy Container : a PCon<T, P> encapsulates sensitive
data of type T and an associated policy of type P as private members. As a result, applica-

tions cannot directly access PCon-protected data. As unsafe Rust code is not guaranteed to

14

1 let arr: [i32; 2] = [2, 5];

2 let mut it: Iter<i32> = arr.iter();

3 it.next()?;

4 let n: &i32 = it.next()?;

(a) Locally safe Rust.

1 let arr: [i32; 2] = [2, 5];

2 let mut it: *const i32 = &raw const arr[0];

3 it = unsafe { it.add(1) };

4 let n: i32 = unsafe { *it };

(b) Unsafe Rust.

1 let arr: [i32; 2] = [2, 5];

2 let mut it: usize = 0;

3 it += 1;

4 let n: i32 = arr[it];

(c) Globally safe Rust.

Figure 1: Three code examples of iterating over an array in Rust: (a) shows idiomatic Rust

code using the Iter type in the standard library. This code looks safe—we call it locally safe
because it does not contain any unsafe code on the surface. (b) directly uses unsafe pointer

arithmetic to iterate over the array, which is essentially the underlying implementation of

(a). This shows how locally safe Rust often relies on unsafe code encapsulated in safe

interfaces like Iter. (c) is non-idiomatic but globally safe Rust code, because it does not
use any features which transitively invoke unsafe code. Efficient iterators based on pointer

arithmetic cannot be implemented in globally safe Rust.

15

System Goal Scope
Rust

Property
Violation

Sesame [15]

privacy

enforcement

no “malicious”

unsafe code

encapsula-

tion

data leakage and

privacy

violations

RedLeaf [32]

kernel

subsystem

isolation

“restricted to safe

Rust“

immutabil-

ity

no isolation

between

subsystems,

kernel cannot

recover after

crashes

Flowistry [13]

analyzing

information flow

“safe subset of

Rust programs”

lifetimes +

immutabil-

ity

misses existing

flows (unsound)

Net-

bricks [35]

packet isolation

between NFs

no “unsafe

pointer

arithmetic”

immutabil-

ity of

references

packet modified

after NF sent,

memory bugs

Cocoon [26]

information flow

control

“absence of

unsafe Rust”

encapsula-

tion,

immutabil-

ity of

references

data leakage

Boucher et

al. [10]

serverless

function

isolation

“safe Rust”

“language

isolation”

data leaks

between

serverless

functions

Figure 2: A list of recent Rusty systems along with their declared scope, the bonus proper-

ties they rely on, and example violations that we confirmed are possible with locally (but

not globally) safe extensions.

16

respect encapsulation, it can break Sesame’s guarantees (e.g., by calling Rust’s unsafe

mem::transmute function). Importantly, such code does not necessarily cause undefined

behavior, but it still violates the bonus property upon which Sesame depends.

Scenario. To demonstrate how applications might inadvertently violate Sesame’s prop-

erties, we consider the questions_submit endpoint in Sesame’s WebSubmit homework

submission application. This endpoint receives a homework submission, which Sesame

wraps inside a PCon with an access control policy attached.

We added a logging library to this application that uses the abomonation [31] crate to

serialize objects before logging them. This library uses unsafe code to re-interpret objects’

memory content as bytes and serialize any heap data the object points to recursively. In

addition to serialization and logging, developersmay implement similar code for other pur-

poses, such as stack inspection for panics. Using this library to log the text of a homework

submission breaks the guarantees of a PCon implementation that depends on encapsula-

tion, because the policy-protected data gets externalized (logged) without a policy check.

To protect against this pattern of unsafe code, Sesame uses a fallback mechanism: rather

than storing the protected data itself, PCons store a pointer to the data and obfuscate

the pointer with a private constant in Sesame. With this mechanism in place, the logging

library prints only the obfuscated pointer. This defends against some unsafe code that

violates the bonus property of encapsulation; however, it comes at a 2× runtime overhead

in Sesame’s microbenchmarks, and it does not prevent arbitrary unsafe code from leaking

data, e.g., unsafe code that swaps policies with more permissive ones, or reads Sesame’s

private constant and de-obfuscates the data pointer stored in a PCon.

3.3 RedLeaf: Violating Kernel Subsystem Isolation

RedLeaf is an operating system that implements isolation between kernel subsystems us-

ing Rust [32]. Popular kernels today lack such isolation; each subsystem can access the

entire memory. When a subsystem crashes, the kernel often cannot recover, as it is un-

clear what state the crashed subsystem modified.

RedLeaf relies on immutability of references when rolling back crashed kernel sub-

systems. In RedLeaf, kernel subsystems can only exchange data through a special shared

heap via immutable references or by transferring ownership. When a subsystem crashes,

the rest of the kernel only needs to clean up data the crashed subsystem owns, since that

is the only data it could have modified. However, interior mutability in Rust allows modi-

fying data behind immutable references, which may be owned by another subsystem, thus

endangering the guarantees of RedLeaf.

RedLeaf restricts the types that can be allocated on the shared heap using an auto trait

RRefable. RRefable disallows data types containing raw pointers from being allocated

on the shared heap, but not interiorly mutable data types (e.g., RefCell). Therefore, a

17

crashed subsystem that modified the content of a RefCell from the shared heap could

leave the system in an inconsistent state.

Scenario. To demonstrate how this might happen, we implemented a pluggable sched-

uler as a kernel subsystem that meets RedLeaf’s RRefable restrictions but breaks the sys-

tem’s guarantees. The scheduling interface uses a single function to choose the thread that

should be scheduled next. That function takes the list of metadata for the queued threads

as input, chooses the next thread, removes its metadata from the list, marks the thread as

running, and then returns. Thread metadata cannot be private to the scheduler because the

base kernel must also be able to modify it when a thread is created or destroyed. We share

this metadata between the kernel and the scheduler via the shared heap. To allow both

subsystems to modify it, we store thread metadata in a RefCell. The original RedLeaf

scheduler also follows this design pattern.

However, if the scheduler code crashes after removing the thread metadata from the list

but before returning, that thread’s metadata is lost. Because the scheduling subsystem does

not own the threads list, the rest of the kernel will not attempt to roll it back after the crash.

Hence, the crash in the scheduler subsystem will cause the permanent loss of the thread,

preventing it from being scheduled again. In this way, interior mutability in the locally

safe scheduler code breaks RedLeaf’s guarantees.

3.4 Other Systems

Similar problems show up in other systems. Information flow control in Cocoon [26] re-

lies on immutability of references and encapsulation; outside of globally safe Rust, Cocoon

can leak high-security data to low-security sinks. Flowistry [13] relies on Rust’s aliasing

and immutability properties to soundly establish data flow; otherwise, it may miss flows

through unsafe code, breaking soundness. A proposal for lightweight isolation inmicroser-

vices [10] relies on Rust’s immutability and encapsulation properties, among others, to

provide language-based isolation. Serverless functions that are only locally safe will pass

the implementation’s “no-unsafe” lint, but may invoke dependencies that use unsafe code

to break language isolation. Finally, Netbricks [35] uses Rust’s features to enforce isolation

between network functions (NFs). Unless NFs are globally safe, they can leak references

that allow access to packets already passed off to another NF (an isolation violation).

3.5 Summary

These examples illustrate that valid unsafe code can break the bonus properties upon

which published research systems rely, causing serious vulnerabilities in extension code.

Because unsafe code is necessary, systems cannot avoid it entirely. Furthermore, because

it is often encapsulated in libraries, finding and auditing unsafe code is difficult for exten-

sion and system developers, not to mention the effort required to vet unsafe code across

18

a realistically sized dependency tree. Developers need a better solution that directs their

attention to reachable and problematic unsafe code in dependencies.

19

4 Sniffer Design

The examples in §3 demonstrate that some Rusty systems rely on bonus properties that are

only guaranteed in globally safe code, which is rare in practice [21]. Despite this shortcom-

ing, Rusty systems still present an exciting opportunity. We would like their guarantees to

hold across a wide variety of applications.

Property-targeted auditing is our means to extend the guarantees of systems that depend

on bonus properties to code that is not globally safe. We present Sniffer, a prototype tool

for property-targeted auditing using static analysis. Sniffer seeks to not only provide pre-

cise information about what unsafe code is reachable, but also leverage the specific and

scoped requirements of Rusty systems, such as “encapsulation of PCons must never be

violated” (Sesame) or “shared-heap references passed to a domain invocation must never

be mutated” (RedLeaf). We pursue this approach because it fills a gap in the design space:

it requires no opt-in from library developers who are agnostic to the concerns of such a

system, and it is a strong and expressive validation mechanism.

4.1 Overview

Sniffer analyzes an input crate and its dependencies for adherence to specified properties.

Sniffer represents the properties as specific unsafe operations and function calls. Sniffer

is a compiler plugin; its analysis is performed on mid- and high-level intermediate repre-

sentations (MIR & HIR) that the Rust compiler generates. Sniffer approximates each Rust

codebase as a call graph, and looks for reachable paths to functions that are flagged as vi-

olating the property. The call graph approximation is easy and fast to compute. It quickly

rules out many false positives proposed by other tools that return all property-violating

code in dependencies, although it is less precise than variable-granularity dependency

graphs as in Paralegal [1].

To begin their audit, users annotate functions in their extension code as entry points for

analysis. Figure 3 describes the available annotations that users can attach to functions.

Sniffer emits compiler diagnostics to indicate calls in the top-level application that invoke

code that may violate the specified property. It also produces visualizations of the call

chains between the top-level crate and the flagged region. Auditors can use the call chain

information and a careful review of the source code to decide if the region truly threatens

the guarantees of the system.

4.2 Analysis

The first step in any Sniffer analysis is to construct a monomorphized call graph of all tran-

sitively reachable functions using PEAR [2]. The call graph construction conservatively re-

solves dynamic dispatch. Sniffer implements checks for bonus properties as a visitor over

20

Example Description Parameters

forbid_unsafe

Find reachable unsafe

functions, methods, and

blocks.

–

freeze

Detect interior

mutability via calls to

UnsafeCell’s .get()

and .raw_get().

–

panic_free Find panicking bodies. –

encapsulation(PCon)

Find violations of struct

encapsulation via

transmute and raw

pointer casts.

Extension-level

types that must

remain intact.

allow(std::iter, core)

Filter out analysis results

that are invoked in or by

this crate.

Path prefixes to

allowlist.

Figure 3: Sniffer API. Auditors attach annotations to functions they wish to use as entry

points to analysis. Each annotation triggers a different analysis to detect reachable unsafe

code, interior mutability, panics, or violations of encapsulation. Auditors specify allowlists

via path prefixes to filter results from crates, modules, or functions (last line).

21

each function body in the call graph. These analyses identify all regions that may violate

the property.

Sniffer is sound but not complete, meaning that it may warn the developer of regions

that do not actually violate the property (false positives), but it will never miss a region

that truly does violate the property. Sniffer has two main sources of false positives: dy-

namic dispatch resolution, which can mark functions as “possibly reachable,” and property

heuristics, which may mark innocuous regions as violating the target property.

When Sniffer returns analysis results, the auditor’s next step is to determine whether any

“possibly reachable” functions would be invoked at runtime. Next, the auditor uses the

context of the intended guarantees of a system to determine if the flagged region consti-

tutes a true violation. This step depends on the property the auditor is investigating; the

process to follow up on results from various Sniffer analyses is described below.

Reachable Unsafe. Sniffer finds reachable unsafe code via a visitor over the High-

Level Intermediate Representation (HIR) of each function body. This visitor finds all unsafe

blocks, functions, and implementations of unsafe traits. Unlike most other analyses, Sniffer

performs this analysis over the HIR rather than the MIR. This is because unsafety infor-

mation is stripped away during an unsafety checking pass between the HIR and MIR [50].

Broken Encapsulation. Auditors can specify types in their programwhose encapsula-

tion must not be broken. To circumvent the field privacy of a struct, the struct must first be

converted to another type, e.g., one with public fields. Therefore, Sniffer alerts the auditor

of flows from the specified type to transmute or raw pointer cast operations, which can

be used to reinterpret the struct as another type. This is implemented via a visitor over the

MIR of each reachable function body.

This is a stronger, but easier to check, property than encapsulation alone. To determine

if a region Sniffer finds is a violation of encapsulation, the auditor must confirm that the

bytes exposed by the transmute or raw pointer cast are read afterwards.

Interior mutability. Sniffer’s check for interior mutability searches the monomor-

phized call graph for calls to .get() and .raw_get() on UnsafeCell. The UnsafeCell

is the core primitive for interior mutability in Rust [49]. These getter methods are the

two ways to obtain a raw pointer *mut T to its contents. Other interiorly mutable types

such as Cell, RefCell, and Arc wrap UnsafeCell and must invoke these methods to

mutate the contents of an UnsafeCell when holding an immutable reference. This check

cannot be circumvented by implementing an alternative interiorly mutable struct, because

UnsafeCell is specially privileged by the Rust compiler to allow its functionality; in other

contexts, transmuting a &T to a &mut T is undefined behavior [44].

When Sniffer alerts an auditor to a call to UnsafeCell’s .get() or .raw_get(), they can

look at the call graph to determine in what context the call originated, e.g., an application-

22

level call to RefCell’s borrow_mut, and decide whether this is an acceptable instance of

interior mutability. This may depend on the type of the data stored in the UnsafeCell.

For example, in RedLeaf, the RRef type represents data shared between kernel subsystems;

interior mutability over this type can break subsystem isolation.

Panics. To find calls that may panic, Sniffer searches the call graph for invocations of

core::panicking::panic_fmt. All the various panicking operations, such as explicit

panic!(), .expect(), and .unwrap() on a Option or Result can be detected by finding

instances of panic_fmt.

Auditing a possible panic flagged by Sniffer involves reasoning about application-level

invariants and determining whether error states are actually reachable. In our case studies,

a frequent source of false positives is instances where a constant is passed to a function that

will panic only if passed a particular value. The Sniffer-provided call graph visualization

is particularly useful to identify these false positives.

23

Analysis LoC
Reachable Unsafe 119

Broken Encapsulation 148

Interior Mutability 43

Panic Freedom 24

Figure 4: LoC for each of Sniffer’s analyses.

5 Implementation

Sniffer is built on rustc nightly-2024-01-06 in 1.4k lines of Rust. Figure 4 shows the

lines of code for each specific analysis, and the remainder is shared infrastructure. Sniffer

is a compiler plug-in using PEAR [2] to build the underlying monomorphized call graphs

and rustc_plugin [14] to interface with the Rust compiler. Sniffer requires client code to

compile with nightly-2024-01-06.

24

6 Case Studies

We evaluate Sniffer on five case studies. In this section, we describe each case study’s

purpose, target property, and the ways in which developers sought to uphold this property.

§7 discusses the results of our evaluation.

6.1 Sesame

Sesame [15] is described more thoroughly in §3.2. Sesame is a system for end-to-end pri-

vacy compliance in Rust web applications. It guarantees that code processes user data in

accordance with privacy policies. As data moves around the application, it is stored as a

private member in a privacy container or PCon struct. This controls access to the private

data to guarantee it is only operated upon in policy-compliant operations.

This guarantee depends on the bonus property of encapsulation: if a library uses unsafe

code to access a private member of a PCon, operations on the data will not necessarily be

governed by Sesame policies. Due to its prevalence in real-world applications and their de-

pendencies, Sesame cannot place all unsafe code out of scope, but excludes “outright mali-

cious” unsafe code from the threatmodel. To handle other problematic unsafe code, Sesame

includes a runtime mechanism to protect against mistakenly casting away the PConwrap-

per. This prevents the application from leaking private data in a case like the transmute

example, but incurs a 1.7–2.1× overhead in microbenchmarks [15]. Using Sniffer to find

possible violations of encapsulation at compile time would eliminate this overhead.

6.2 RedLeaf

RedLeaf [32] is described more thoroughly in §3.3. RedLeaf is an operating system that

seeks to use Rust to provide lightweight isolation between kernel subsystems. A primary

goal of this work is to prevent a crash in any one subsystem from affecting the execution

of the others. The rollback mechanism hinges on a design that only requires references

to be immutable in order to be shared between subsystems. In the absence of interior

mutability, this ensures that each kernel subsystem cannot mutate shared data, only that

which it owns, which cleanly delineates the data that can be in an inconsistent state after

a crash.

RedLeaf attempts to govern the types that can be shared between subsystems with the

RRefable autotrait. However, the autotrait implementation still allows interiorly muta-

ble types, e.g., RefCell, which mistakenly permits subsystems to modify shared data and

leave the system in an inconsistent state if they crash. Using Sniffer to audit the RedLeaf

domains for instances of interior mutability would allow the extension developers to con-

firm that RedLeaf’s rollback guarantees truly hold.

25

Function Purpose
Crates
Analyzed

#

Functions
Analyzed

Unsafe
Instances
Found

crypto_kdf_keygen Key Generation 4 16 7

crypto_sign Signing 8 148 20

crypto_box_easy

Authenticated

Asymm.

Encryption

8 202 54

Figure 5: Sniffer located 7, 20, and 54 instances of unsafe code in the call graphs of three

dryoc cryptography functions. All counts are deduplicated, and we exclude std, core,

and alloc (which contain substantial unsafe code, but are generally trusted).

6.3 dryoc

The cryptography library dryoc [19] is a pure Rust re-implementation of libsodium [16].

It aims to be “mostly free of unsafe code”, with caveats for “some third-party libraries, such

as those with SIMD” [19]. Minimizing unsafe code in a cryptographic context is relevant

because unsafe buried in the call chains of the library’s functions could leak cryptographic

secrets (e.g., via buffer overflows or memory allocations that are not zeroed out after use).

When seeking to minimize unsafe code, the developers of dryoc likely only considered

unsafe code that they directly invoke. Sniffer could help them find unsafe code abstracted

away in dependencies in order to audit it.

6.4 ufmt & bitter

We applied Sniffer to audit two utility crates advertised as panic-free: ufmt [47], and bit-

ter [9]. The crate ufmt is an alternative to core::fmt, and the crate bitter is a bit-reading

utility. The developers of both crates used the tool no-panic [33] to confirm panic freedom.

no-panic prevents programs from linking with the symbol for panic in the standard library.

If a crate compiles with all optimizations and no-panic enabled, it is statically proven to

not panic.

The tool no-panic is a suitable approach for crateswith relatively simple, straight-line code,

such as these two case studies. However, it is likely overly restrictive for more complex

codewhere reasoning about program state is necessary to determine if a panic is possible. If

the compiler does not optimize away the path to a panic state, the whole codebase fails the

check, and no-panic returns the function from which the panic originated without further

information about the intermediate call graph [33]. Furthermore, no-panic cannot check

individual functions or modules for panic freedom, as it must compile the entire crate. On

the other hand, Sniffer allows auditors to specify individual functions to analyze, and it

returns the full call graph leading up to a panic to help the auditor complete the audit.

26

7 Evaluation

To evaluate Sniffer’s value as a property-targeted auditing tool, we ask the following ques-

tions:

1. Does Sniffer find the problematic code?

2. What is the false positive rate of Sniffer analyses? As discussed in §4, Sniffer can

return false positives from dynamic dispatch approximation and conservative prop-

erty heuristics.

3. How does Sniffer compare to the existing audit tools Cargo Scan [53] and Cargo

Geiger [12] in terms of accuracy and audit burden?

We evaluate these questions by applying Sniffer to audit four endpoints in WebSubmit,

a real-world application ported to Sesame [15]; a scheduler subsystem for RedLeaf [32];

dryoc [19], a cryptography library that seeks to minimize unsafe code, and two crates that

are known to be panic-free, ufmt [47] and bitter [9].

Baseline Audit Tools. The existing audit tools against which we compare are Cargo

Scan [53] and Cargo Geiger [12]. Both find unsafe code in an application and its depen-

dencies. Cargo Scan is a program analysis tool to help developers audit a Rust codebase

for side effects including unsafe operations and system calls. In this evaluation, we ap-

ply Cargo Scan to the crate and its dependencies individually. We omit considering Cargo

Scan’s optional “cross-package audit” mode, which creates an approximated call graph,

because it does not expand macros or resolve trait method calls for implementations in

foreign crates, thus failing to report some reachable unsafe code.

7.1 Encapsulation Violations in Sesame

We applied Sniffer to the modified WebSubmit questions_submit endpoint described

in §3.2. We inserted a call to a logging library where unsafe code breaks encapsulation,

leading to a leak of sensitive data. We run Sniffer over the endpoint with the analysis set

to detect possible instances of broken encapsulation on the PCon type. More specifically,

this analysis finds calls to transmute or raw pointer casts on an object that is or contains

the PCon type (see §4.2 for more). A good result would be to locate the known dangerous

call to the logging library and few false positives. Sniffer identified 12 calls with potential

violations:

1. The call to the logging library, which then calls abomonationwhere an encapsulation-

breaking transmute is executed.

2. Four calls with pointer casts inside the standard library’s Iterator and HashMap,

which we confirmed do not violate encapsulation. If standard library collections are

trusted, Sniffer could skip those calls.

27

Endpoint Purpose
Crates
Analyzed

Functions
Analyzed

Encap.
Breaking

Instances Found

leclist

display

lecture

menu

65 33,666 31

composed_answers

display

answers

66 35,116 32

questions
display

questions

66 34,634 31

modified
questions_submit

submit

answer

79 35,768 12

Figure 6: Sniffer located possible instances of broken encapsulation in the call graphs of

four WebSubmit application endpoints. This represents the audit burden for each of these

endpoints. In themodified submit_answer endpoint, one of these calls was the call to the
encapsulation-breaking logging library. All counts are deduplicated, and we exclude calls

through Sesame, which is trusted.

3. One call is a drop, e.g., destructor, on the backing store connection. The auditor

would disregard this result because it does not externalize data.

4. Six other calls are false positives due to dynamic dispatch approximation. We man-

ually checked that these functions are irrelevant and dismissed them.

Figure 6 shows the counts of false positive violations of encapsulation on PCons in this

modified endpoint and three other unmodified WebSubmit endpoints. These results sug-

gest that the Sniffer encapsulation analysis focuses auditor attention on a manageable

number of regions in real-world web application code.

Reduction inAudit Effort. To provide a baseline for the audit burden required to check

for breaches of encapsulation with existing tools, we run the experiment described above

with Cargo Scan [53] and Cargo Geiger [12]. We applied Cargo Scan and Cargo Geiger

to every dependency required by the application. A good result for Sniffer would indicate

that it reduces the developer effort required to check the target property as compared to

these baselines. Cargo Geiger reports 33,735 potentially “used” unsafe items, while Cargo

Scan reports 43,761 items to audit, in line with the developer burden reported in their

experiments [53]. This contrasts with the 12 items to audit with Sniffer, and illustrates

Sniffer’s reduction in audit effort.

Effect of property targeting. To better understand the impact of property targeting,

we also used Sniffer to find any unsafe blocks that is reachable from this endpoint. This

removes the property targeting layer of Sniffer’s analysis, and is thus more comparable to

28

Cargo Geiger and Cargo Scan’s approach. We found that there are 9,982 reachable unsafe

blocks. This indicates that property targeting is a critical component of the reduction in

audit effort.

7.2 Interior Mutability in RedLeaf

We applied Sniffer to the custom scheduler domain in RedLeaf described in §3.3. Due to

compiler versioning differences, in lieu of running Sniffer over all of the RedLeaf OS, we

isolated and ported the relevant portion of the RedLeaf code, i.e., shared heap infrastruc-

ture and RRefable trait definition, to a separate crate, and ran Sniffer over the scheduling

domain. A good result would be to highlight the single call to borrow_mut on the RefCell

that is passed to the domain, and few false positives. Sniffer identified two calls with po-

tential violations:

1. The dangerous call to borrow_mut on the RefCell passed to the scheduler domain.

2. The call to the automatically-derived drop implementation for the thread metadata

object.

To estimate howmany regions Sniffer would flag if wewere to use it to audit all of RedLeaf,

we manually found calls to borrow_mut in RedLeaf’s “domains” module. We found 38

instances that Sniffer would highlight, which would be a reasonable audit burden. These

calls are false positives because the relevant RefCells wrap data passed within a domain,

rather than data passed between domains. Our Sniffer prototype does not track variable-

level data flow, so it would not be able to filter out these false positives. A more precise

check for RedLeaf’s target property would flag interior mutability of data derived from

variables that are shared between domains.

Tomeasure the reduction in audit effort that the property-targeting component of Sniffer’s

analysis conveys, we also used Sniffer to find any unsafe blocks reachable from the sched-

uler code. This more general analysis does not differentiate between guarantee-breaking

and irrelevant unsafe code; the false positives from this analysis form a subset of those

returned by tools that do not filter out unreachable unsafe code, e.g., Cargo Scan [53] and

Cargo Geiger [12]. We found 31 reachable unsafe blocks, one of which is the guarantee-

breaking instance of interior mutability—the dereference of the raw pointer to the contents

of the UnsafeCell requires an unsafe block. The reduction from 31 to 2 regions to audit

indicates that filtering reachable unsafe code by properties effectively reduces audit effort.

On the whole, these results indicate that Sniffer’s interior mutability analysis poses a man-

ageable audit effort and finds guarantee-breaking unsafe code with few false positives.

29

7.3 Unsafe Code in dryoc

This case study demonstrates how a developer concerned with minimizing unsafe code

could use Sniffer to strengthen their confidence that any reachable unsafe is trusted. We

applied Sniffer to three functions from the cryptography library dryoc. Figure 5 shows

the results: Sniffer found 7, 20, and 54 instances of unsafe code. Most of these went beyond

the uses mentioned in the library’s README, which stated that "3rd party libraries used

by this crate, such as those with SIMD, may contain unsafe code" [19].

Many of these functions are calls into generic-array [23], an array operation library that

uses unsafe code for optimizations. Our audit revealed that other retrieved functions origi-

nated in the zeroize [52] crate to zero outmemory, aswell as the subtle [41] crate, which

provides a primitive to prevent timing attacks via compiler optimizations.We inspected the

code discovered. For example, the unsafe code reachable from the crypto_sign function

include libraries for constant-time operations and memory zeroing (via unsafe, volatile

operations); an elliptic curve library that uses unsafe code for performant math; and array

data structure operations. These are reasonable, and the auditor would accept them after

careful inspection.

Reduction in Audit Effort. An audit with Cargo Geiger reports 667 unsafe blocks in

dryoc and its dependencies. This indicates that Sniffer significantly reduces audit bur-

den by allowing auditors to target specific function and via its use of precise reachability

analysis. Sniffer’s report gives the developer a clearer idea of potential risks and they can

choose to audit or replace these components.

7.4 Panic Freedom in ufmt & bitter

Both ufmt and bitter were statically confirmed to be panic-free with the tool no-panic [33].

We analyze these crates with Sniffer to evaluate the false positive rate of the panic freedom

analysis. A good result for Sniffer would be to return zero or few possible panics.

Our audit confirmed the panic freedom of ufmt with zero false positives. We analyzed

three core utilities in bitter. Figure 7 shows the results. Two of the functions passed

Sniffer’s analysis with zero false positives, and read_n_bytes returned two false positives.

Both of these could be eliminated with interprocedural constant propagation. For example,

core::slice::windows can panic if passed a window size of 0, but this call receives the

constant 2. These results indicate that Sniffer’s panic freedom analysis is effective as a tool

to audit for panics, and its accuracy would be further improved with constant propagation.

30

Function
Crates
Analyzed

#

Functions
Analyzed

#

Panics
Found

True
Panics

refill_lookahead_unchecked
2 29 0 0

sign_extend 2 4 0 0

read_n_bytes 2 61 2 0

Figure 7: Sniffer located possible panics in a the bitter [9] crate, which is statically

proven [33] to not panic. Sniffer encountered two false positives on read_n_bytes. All

counts are deduplicated, and we do not allowlist any crates.

31

8 Discussion

Developing New Analyses. A strength of Sniffer’s design is extensibility. In our expe-

rience, implementing and integrating new analyses to Sniffer’s suite is low-effort, as anal-

ysis components and patterns are reusable between analyses. For example, the pattern of

detecting a call to a particular standard library function is the core of both the interior

mutability and panic analyses. Beyond similarities in design, additional analyses require a

manageable amount of additional development: each analysis in the existing suite consists

of 24-148 lines of code.

Checking Properties over Variables. Users of Sniffer auditing their systems for prop-

erties over specific variables, e.g., a dryoc policy that a secret key does not flow into any

unsafe blocks, would benefit from variable-granularity flow analyses. Tracking data flow at

the granularity of individual variables could be implemented via alias resolution facilitated

by Flowistry [13].

Automated Auditing. Developers of Rusty systems that depend on very specific target

properties can also incorporate Sniffer analyses to reject extension code that violates those

properties. For example, Sesame could incorporate an encapsulation analysis pass into the

build script that invokes the Scrutinizer static analyzer [15], and RedLeaf could replace or

supplement the RRefable auto trait with an interior mutability analysis pass [32]. This

would shift more effort to the system developer, who fully understands the properties

upon which their system relies, instead of the extension developer. To make this approach

feasible, Sniffer would need amore expressive DSL in order to support very precise policies

and would need to further reduce false positives that would reject valid code.

32

9 Conclusion

Sniffer is a tool to surface dangerous unsafe code. The key challenge of this work is differ-

entiating between banal unsafe code and that which threatens the guarantees of a system.

When we investigate the effects of unsafe code that go beyond undefined behavior, what is

“dangerous” is specific to a system. This is particularly pertinent for systems that depend

on bonus properties that are compiler-checked in globally safe Rust, like encapsulation and

immutability of references. In this thesis, we demonstrated how the guarantees of systems

that depend on bonus properties can be violated even when an extension developer does

not write any unsafe code themselves, and proposed more precise vocabulary to describe

the scopes and unsafety status of Rust programs. Finally, we proposed Sniffer as a flexible,

expressive means to maintain the guarantees of Rusty systems in the presence of unsafe

code. We evaluated it on real systems and libraries, finding that Sniffer is practical and

imposes lower audit burden than existing tools intended for similar use cases.

33

References

[1] Justus Adam et al. Paralegal. 2023. url: https : / / github . com / brownsys /
paralegal (cit. on p. 20).

[2] Artem Agvanian. “PEAR: Practical Interprocedural Analysis in Rust”. Honors The-

sis. 2025. url: https://etos.cs.brown.edu/publications/theses/aagvania-

honors.pdf (cit. on pp. 20, 24).

[3] Roderick Chapman et al. Rust Contracts RFC Draft. Accessed: Jan. 2025. url: https:
//hackmd.io/@nG8Ewk1OTDS-qIUxGrXyVw/BJ7N-uRLs (cit. on p. 12).

[4] V. Astrauskas et al. “The Prusti Project: Formal Verification for Rust”. In: NASA
Formal Methods (14th International Symposium). Springer, 2022, pp. 88–108. url:
https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5

(cit. on p. 11).

[5] Vytautas Astrauskas et al. “How do programmers use unsafe rust?” In: Proceedings
of the ACM on Programming Languages 4 (Nov. 2020), pp. 1–27. doi: 10.1145/

3428204 (cit. on pp. 9, 10).

[6] Yechan Bae et al. “Rudra: Finding Memory Safety Bugs in Rust at the Ecosystem

Scale”. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. SOSP ’21. Virtual Event, Germany: Association for Computing Machin-

ery, 2021, pp. 84–99. isbn: 9781450387095. doi: 10.1145/3477132.3483570. url:

https://doi.org/10.1145/3477132.3483570 (cit. on pp. 7, 11).

[7] Behavior considered undefined. 2025. url: https://doc.rust-lang.org/reference/
behavior-considered-undefined.html (cit. on p. 9).

[8] binary-utils. Accessed: April 2025. url: https://github.com/NetrexMC/binary-
utils (cit. on p. 7).

[9] bitter. Accessed: April 2025. url: https://github.com/nickbabcock/bitter
(cit. on pp. 7, 26, 27, 31).

[10] Sol Boucher et al. “Putting the "Micro" Back in Microservice”. In: Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX

Association, July 2018, pp. 645–650. isbn: 978-1-939133-01-4. url: https://www.

usenix.org/conference/atc18/presentation/boucher (cit. on pp. 6, 16, 18).

[11] Nick Cameron. LibHoare - Simple Rust support for design by contract-style assertions.
Accessed: Jan. 2025. url: https://github.com/nrc/libhoare (cit. on p. 12).

[12] cargo-geiger. Accessed: Jan. 2025. url: https://github.com/geiger-rs/cargo-
geiger (cit. on pp. 7, 27–29).

[13] Will Crichton et al. “Modular Information Flow throughOwnership”. In: Proceedings
of the 43rd ACMSIGPLAN International Conference on Programming Language Design
and Implementation. PLDI 2022. San Diego, CA, USA: Association for Computing

Machinery, 2022, pp. 1–14. isbn: 9781450392655. doi: 10.1145/3519939.3523445.

url: https://doi.org/10.1145/3519939.3523445 (cit. on pp. 16, 18, 32).

34

https://github.com/brownsys/paralegal
https://github.com/brownsys/paralegal
https://etos.cs.brown.edu/publications/theses/aagvania-honors.pdf
https://etos.cs.brown.edu/publications/theses/aagvania-honors.pdf
https://hackmd.io/@nG8Ewk1OTDS-qIUxGrXyVw/BJ7N-uRLs
https://hackmd.io/@nG8Ewk1OTDS-qIUxGrXyVw/BJ7N-uRLs
https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3477132.3483570
https://doi.org/10.1145/3477132.3483570
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://github.com/NetrexMC/binary-utils
https://github.com/NetrexMC/binary-utils
https://github.com/nickbabcock/bitter
https://www.usenix.org/conference/atc18/presentation/boucher
https://www.usenix.org/conference/atc18/presentation/boucher
https://github.com/nrc/libhoare
https://github.com/geiger-rs/cargo-geiger
https://github.com/geiger-rs/cargo-geiger
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/3519939.3523445

[14] Will Crichton et al. rustc_plugin. https://github.com/cognitive-engineering-
lab/rustc_plugin. 2025 (cit. on p. 24).

[15] Kinan Dak Albab et al. “Sesame: Practical End-to-End Privacy Compliance with Pol-

icy Containers and Privacy Regions”. In: Proceedings of the ACM SIGOPS 30th Sym-
posium on Operating Systems Principles. 2024, pp. 709–725 (cit. on pp. 6, 7, 14, 16, 25,

27, 32).

[16] FrankDenis. libsodium. Accessed: Jan. 2025. url: https://github.com/jedisct1/

libsodium (cit. on p. 26).

[17] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. “Creusot: a foundry for

the deductive verification of rust programs”. In: Proceedings of the International Con-
ference on Formal Engineering Methods. Springer. 2022, pp. 90–105 (cit. on p. 11).

[18] Design Notes: Auto traits. Accessed: Jan. 2025. url: https://lang-team.rust-
lang.org/design_notes/auto_traits.html (cit. on p. 13).

[19] dryoc: Don’t Roll Your Own Crypto. Accessed: Jan. 2025. url: https://github.
com/brndnmtthws/dryoc (cit. on pp. 7, 26, 27, 30).

[20] E0492: borrow of an interior mutable value may end up in the final value during
const eval when no inner mutability is involved. Accessed: Jan. 2025. url: https:
//github.com/rust-lang/rust/issues/121250 (cit. on p. 12).

[21] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. “Is rust used safely by

software developers?” In: Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering. ICSE ’20. ACM, June 2020. doi: 10.1145/3377811.

3380413. url: http://dx.doi.org/10.1145/3377811.3380413 (cit. on pp. 6,

9, 20).

[22] Robert Bruce Findler andMatthias Felleisen. “Contracts for higher-order functions”.

In: SIGPLAN Not. 37.9 (Sept. 2002), pp. 48–59. issn: 0362-1340. doi: 10 . 1145 /

583852.581484. url: https://doi.org/10.1145/583852.581484 (cit. on

p. 12).

[23] generic-array. Accessed: June 2025. url: https://crates.io/crates/generic-
array (cit. on p. 30).

[24] Son Ho and Jonathan Protzenko. “Aeneas: Rust verification by functional transla-

tion”. In: Proceedings of the ACM on Programming Languages 6.ICFP (Aug. 2022). doi:
10.1145/3547647. url: https://doi.org/10.1145/3547647 (cit. on p. 11).

[25] Rahul Kumar et al. “Verifying the Rust Standard Library”. In: Proceedings of 16th In-
ternational Conference on Verified Software: Theories, Tools, and Experiments (VSTTE).
Prague, Czech Republic, Oct. 2024. url: https://www.soundandcomplete.org/

vstte2024/vstte2024-invited.pdf (cit. on p. 12).

[26] Ada Lamba et al. “Cocoon: Static Information Flow Control in Rust”. In: Proceedings
of the ACM on Programming Languages 8.OOPSLA1 (Apr. 2024). doi: 10.1145/

3649817. url: https://doi.org/10.1145/3649817 (cit. on pp. 6, 16, 18).

35

https://github.com/cognitive-engineering-lab/rustc_plugin
https://github.com/cognitive-engineering-lab/rustc_plugin
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://lang-team.rust-lang.org/design_notes/auto_traits.html
https://lang-team.rust-lang.org/design_notes/auto_traits.html
https://github.com/brndnmtthws/dryoc
https://github.com/brndnmtthws/dryoc
https://github.com/rust-lang/rust/issues/121250
https://github.com/rust-lang/rust/issues/121250
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413
http://dx.doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/583852.581484
https://doi.org/10.1145/583852.581484
https://doi.org/10.1145/583852.581484
https://crates.io/crates/generic-array
https://crates.io/crates/generic-array
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://www.soundandcomplete.org/vstte2024/vstte2024-invited.pdf
https://www.soundandcomplete.org/vstte2024/vstte2024-invited.pdf
https://doi.org/10.1145/3649817
https://doi.org/10.1145/3649817
https://doi.org/10.1145/3649817

[27] Andrea Lattuada et al. “Verus: Verifying rust programs using linear ghost types”. In:

Proceedings of the ACM on Programming Languages 7.OOPSLA1 (2023), pp. 286–315
(cit. on pp. 11, 12).

[28] Hayley LeBlanc et al. “SquirrelFS: using the Rust compiler to check file-system crash

consistency”. In: Proceedings of the 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24). Santa Clara, CA: USENIX Association, July

2024, pp. 387–404. isbn: 978-1-939133-40-3. url: https://www.usenix.org/

conference/osdi24/presentation/leblanc (cit. on p. 6).

[29] Haoran Ma et al. “DRust: Language-Guided Distributed Shared Memory with Fine

Granularity, Full Transparency, and Ultra Efficiency”. In: 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24). Santa Clara, CA: USENIX
Association, July 2024, pp. 97–115. isbn: 978-1-939133-40-3. url: https://www.

usenix.org/conference/osdi24/presentation/ma-haoran (cit. on p. 6).

[30] Ian McCormack et al. A Mixed-Methods Study on the Implications of Unsafe Rust for
Interoperation, Encapsulation, and Tooling. 2024. arXiv: 2404.02230 [cs.SE]. url:
https://arxiv.org/abs/2404.02230 (cit. on p. 10).

[31] Frank McSherry. Abomonation: A high performance and very unsafe serialization li-
brary. Accessed: Jan. 2025. url: https://crates.io/crates/abomonation (cit.
on p. 17).

[32] Vikram Narayanan et al. “RedLeaf: Isolation and Communication in a Safe Operat-

ing System”. In: Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, Nov. 2020, pp. 21–39.

isbn: 978-1-939133-19-9. url: https://www.usenix.org/conference/osdi20/

presentation/narayanan-vikram (cit. on pp. 6, 7, 12, 14, 16, 17, 25, 27, 32).

[33] no-panic. Accessed: April 2025. url: https://github.com/dtolnay/no-panic
(cit. on pp. 26, 30, 31).

[34] Tomasz Nowak et al. Semver violations are common, better tooling is the answer. Ac-
cessed: Jan. 2025. Sept. 2023. url: https://predr.ag/blog/semver-violations-

are-common-better-tooling-is-the-answer/ (cit. on p. 13).

[35] Aurojit Panda et al. “NetBricks: Taking the V out of NFV”. In: Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
Savannah, GA: USENIX Association, Nov. 2016, pp. 203–216. isbn: 978-1-931971-

33-1. url: https : / / www . usenix . org / conference / osdi16 / technical -

sessions/presentation/panda (cit. on pp. 6, 16, 18).

[36] MatthewM Papi et al. “Practical pluggable types for Java”. In: Proceedings of the 2008
International Symposium on Software Testing and Analysis. 2008, pp. 201–212 (cit. on
p. 12).

[37] RFC: Stabilize Marker Freeze - Drawbacks. Accessed: Jan. 2025. url: https : / /
hackmd.io/@rust-lang-team/SyRlhj0u0#Drawbacks (cit. on p. 13).

36

https://www.usenix.org/conference/osdi24/presentation/leblanc
https://www.usenix.org/conference/osdi24/presentation/leblanc
https://www.usenix.org/conference/osdi24/presentation/ma-haoran
https://www.usenix.org/conference/osdi24/presentation/ma-haoran
https://arxiv.org/abs/2404.02230
https://arxiv.org/abs/2404.02230
https://crates.io/crates/abomonation
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://github.com/dtolnay/no-panic
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://hackmd.io/@rust-lang-team/SyRlhj0u0#Drawbacks
https://hackmd.io/@rust-lang-team/SyRlhj0u0#Drawbacks

[38] rust-lang/miri: An interpreter for Rust’s mid-level intermediate representation. 2025.
url: https://github.com/rust-lang/miri (cit. on pp. 7, 9, 10).

[39] Safety comments policy - Standard library developers Guide. Accessed: Jan. 2025. url:
https://std-dev-guide.rust-lang.org/policy/safety-comments.html

(cit. on p. 9).

[40] Special types and traits - The Rust Reference. Accessed: Jan. 2025. url: https://
doc.rust-lang.org/reference/special-types-and-traits.html#auto-

traits (cit. on p. 12).

[41] subtle. Accessed: June 2025. url: https://crates.io/crates/subtle (cit. on
p. 30).

[42] The Rustonomicon.Data Races and Race Conditions. Accessed: Jan. 2025. url: https:
//doc.rust-lang.org/nomicon/races.html (cit. on p. 6).

[43] The Rustonomicon. How Safe and Unsafe Interact. Accessed: Jan. 2025. url: https:
//doc.rust-lang.org/nomicon/safe-unsafe-meaning.html#how-safe-

and-unsafe-interact (cit. on p. 6).

[44] The Rustonomicon. Transmute. Accessed: June 2025. url: https://doc.rust-

lang.org/stable/nomicon/transmutes.html (cit. on p. 22).

[45] David Tolnay.Adding interiormutability into a type is already anAPI breaking change.
Accessed: Jan. 2025. url: https://github.com/rust-lang/rust/issues/

60715#issuecomment-491533461 (cit. on p. 13).

[46] Trait std::marker::Freeze. Accessed: Jan. 2025. url: https://doc.rust-lang.org/
std/marker/trait.Freeze.html (cit. on p. 12).

[47] ufmt. Accessed: April 2025. url: https://github.com/japaric/ufmt (cit. on
pp. 7, 26, 27).

[48] UNSAFE_CODE in rustc_lint::builtin - Rust. Accessed: Jan. 2025. url: https://doc.
rust- lang.org/beta/nightly- rustc/rustc_lint/builtin/static.

UNSAFE_CODE.html (cit. on p. 7).

[49] UnsafeCell in std::cell - Rust. Accessed: April 2025. url: https://doc.rust-lang.
org/std/cell/struct.UnsafeCell.html#:~:text=UnsafeCell%20opts%

2Dout,UnsafeCell%20to%20wrap%20their%20data. (cit. on p. 22).

[50] Unsafety Checking - Rust Compiler Development Guide. Accessed: April 2025. url:
https://rustc-dev-guide.rust-lang.org/unsafety-checking.html

(cit. on p. 22).

[51] Alexa VanHattum et al. “Verifying Dynamic Trait Objects in Rust”. In: Proceedings of
the 2022 IEEE/ACM 44th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 2022, pp. 321–330. doi: 10.1145/3510457.
3513031 (cit. on pp. 7, 11, 12).

[52] zeroize. Accessed: June 2025. url: https://crates.io/crates/zeroize (cit. on
p. 30).

37

https://github.com/rust-lang/miri
https://std-dev-guide.rust-lang.org/policy/safety-comments.html
https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits
https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits
https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits
https://crates.io/crates/subtle
https://doc.rust-lang.org/nomicon/races.html
https://doc.rust-lang.org/nomicon/races.html
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html#how-safe-and-unsafe-interact
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html#how-safe-and-unsafe-interact
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html#how-safe-and-unsafe-interact
https://doc.rust-lang.org/stable/nomicon/transmutes.html
https://doc.rust-lang.org/stable/nomicon/transmutes.html
https://github.com/rust-lang/rust/issues/60715#issuecomment-491533461
https://github.com/rust-lang/rust/issues/60715#issuecomment-491533461
https://doc.rust-lang.org/std/marker/trait.Freeze.html
https://doc.rust-lang.org/std/marker/trait.Freeze.html
https://github.com/japaric/ufmt
https://doc.rust-lang.org/beta/nightly-rustc/rustc_lint/builtin/static.UNSAFE_CODE.html
https://doc.rust-lang.org/beta/nightly-rustc/rustc_lint/builtin/static.UNSAFE_CODE.html
https://doc.rust-lang.org/beta/nightly-rustc/rustc_lint/builtin/static.UNSAFE_CODE.html
https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html#:~:text=UnsafeCell%20opts%2Dout,UnsafeCell%20to%20wrap%20their%20data.
https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html#:~:text=UnsafeCell%20opts%2Dout,UnsafeCell%20to%20wrap%20their%20data.
https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html#:~:text=UnsafeCell%20opts%2Dout,UnsafeCell%20to%20wrap%20their%20data.
https://rustc-dev-guide.rust-lang.org/unsafety-checking.html
https://doi.org/10.1145/3510457.3513031
https://doi.org/10.1145/3510457.3513031
https://crates.io/crates/zeroize

[53] Lydia Zoghbi et al. “Auditing Rust Crates Effectively”. (Preprint). 2024. url: https:

//web.cs.ucdavis.edu/~cdstanford/doc/2024/CargoScan-draft.pdf

(cit. on pp. 7, 27–29).

38

https://web.cs.ucdavis.edu/~cdstanford/doc/2024/CargoScan-draft.pdf
https://web.cs.ucdavis.edu/~cdstanford/doc/2024/CargoScan-draft.pdf

	Acknowledgments
	Abstract
	Introduction
	Problem Statement
	Example Scenario
	Contributions

	Background & Related Work
	Background on Rust
	Related Work
	Alternative Approaches to Uphold Bonus Properties

	Safety Challenges for Rusty Systems
	Scoping Safety
	Sesame: Leaking Private Data
	RedLeaf: Violating Kernel Subsystem Isolation
	Other Systems
	Summary

	Sniffer Design
	Overview
	Analysis

	Implementation
	Case Studies
	Sesame
	RedLeaf
	dryoc
	ufmt & bitter

	Evaluation
	Encapsulation Violations in Sesame
	Interior Mutability in RedLeaf
	Unsafe Code in dryoc
	Panic Freedom in ufmt & bitter

	Discussion
	Conclusion
	References

